データ・アナリティクス入門

合宿で描く未来のマーケ戦略

方向性はどう決める? 来年度に向けた部としての1年間の方向性とTODOを検討する合宿で、今回学んだ内容を活かすことができると感じました。合宿では、現状できていることとできていないこと、そして今後必要なソリューションについて話し合いました。具体的には、今後重要になると予想される広告指標について、各ソリューションごとの導入実績を比較し、2024年の傾向を把握することが求められると認識しました。また、現状のホットなマーケティングトピックから、今後伸びるであろうKPIを仮定し、その上でどのようなソリューションを開発すべきかを検討しました。 情報はどう集める? さらに、分析においては、情報やデータの収集方法が非常に重要であると感じました。普段あまり活用していなかった社内のポータルや事例集なども積極的に利用し、必要な情報が何か、足りない情報はないかを意識しながら、学んだプロセスに沿って分析に取り組んでいくつもりです。 分析の進め方は? また、データ分析の基本として、目的を明確にし、仮説思考でアプローチすること、比較を重視すること、そしてwhat→where→why→howというプロセスで考えることの重要性を再確認しました。これらの考え方を実践することで、より具体的な分析結果が得られると実感しています。

データ・アナリティクス入門

数字を超える、比較の妙技

比較と目的はどう考える? 分析において、「比較」と「目的への立ち返り」の大切さを改めて感じました。何かしらの数値をグラフ化して報告するだけでは、かえって分析した気分になってしまい、実際は単なる数字の結果報告に過ぎなかったと認識しています。今後は、目の前の数字だけではなく、適切な比較対象を設定し、分析結果としてしっかり報告できるよう努めたいと考えています。 上司の反応はなぜ? 直近の業務では、状況報告を上司に行った際、好意的な反応を得られず、簡単に取得できる情報だけに依存し、見栄えの良いグラフや表を作成するだけの報告になっていたことを痛感しました。単に数値を並べるだけでなく、それぞれの情報をきちんと比較し、その内容から次の対応や施策を検討できるような報告に改善する必要性を感じています。 次の一手はどうする? そのため、今後の取り組みとして以下の点を意識していきます。 まず、分析の目的を再度明確にすること。 次に、比較する項目や内容について、上司の意見や生成AIのサポートを活用しながら見直しを行うこと。 さらに、定量的な分析だけでなく、定性的な分析も取り入れられるよう検討を進めること。 そして、最終的には目的に沿った次の対応策が検討できるような報告をまとめることを目標とします。

データ・アナリティクス入門

仮説と現場で読み解く数字の物語

現場で何が起きる? 平均値などの代表値を把握するだけではなく、現場で実際に何が起きているかを想像しながらデータに向き合うことが大切です。そのため、自分自身で仮説を立て、仮説検証型で分析を進めることが求められます。分析の目的に応じて比較する対象も変わるため、たとえば「夏の気温は本当に上昇しているのか」という問いに対して、単純に1年前のデータや他の地点のデータと比較するだけでは、十分な答えは得られにくいでしょう。 ビジュアルで何が分かる? また、代表値の理解をより精緻なものにするために、データのビジュアル化を試みることが重要です。第三者に伝えるときだけでなく、自分自身で数値を分析する際にも、数字だけでは見逃しがちな現場の情報に焦点を当てるため、ビジュアル化の活用を心がけましょう。 AI活用はどう役立つ? さらに、医療施設ごとの売上や従業員ごとの活動履歴など、大量かつ複雑なデータに関しては、定型的な加工に陥りやすい傾向があります。まずはデータの分布を把握するためのビジュアル化を行い、分析の目的に合ったデータの特徴を考察する時間を確保することが推奨されます。このプロセスにはAIの活用が有効であるため、迅速に作業に取り掛かれるよう、使用するプロンプトをあらかじめ保存しておくと便利です。

データ・アナリティクス入門

複数仮説で戦略を変える瞬間

仮説立てのヒントは? 課題に対して仮説を立てる際は、単に漠然とアイデアを出すのではなく、4Pや3Cといったフレームワークを活用することで、課題を整理して考える助けになると実感しています。また、具体的な問題解決に向けては、何が問題なのかという複数の仮説を立て、「どこに、なぜ、どうすべきか」という各段階を順に確認することで、より深く掘り下げた対策を見出しやすくなると考えています。 戦略の裏側は? 自身の業務を振り返ると、これまでは業務課題に対して仮説を立て、深堀りして解決策を導くというプロセスが不足していたと感じています。課題を分解して深く検討するステップを踏まず、思いついた打ち手に頼ることが多かったと思います。今回の学びを通じて、今後は課題に対して複数の仮説を立て、どの対策を実行するのが最適かを十分に検討する習慣を身につけ、より深い洞察に基づいた戦略立案を目指したいと考えています。 次は何を選ぶ? さらに、解決すべき課題に対して複数の仮説を立て、それぞれの対策を検討し、最終的に比較検討して選択する業務の流れが重要だと認識しました。今後、事業戦略の立案を進める中では、仮説立てや深掘り、そして対策の選択というステップを必ず踏むことで、より質の高い戦略を策定していきたいと思います。

データ・アナリティクス入門

比較と目的で開く新発見

何を比較すべき? 分析について学んだことは大きく3点あります。まず、分析は何かと何かを比較することで初めて意味を持つという点です。単に数値を並べるだけではなく、比較対象を明確にすることで発見が生まれます。 目的は何か? 次に、分析には明確な目的が必要であるということです。目的がはっきりしていなければ、どの数値を見て何を判断すべきか分からず、結果として行き当たりばったりな分析になってしまいます。 チーム連携はどう? そして、チーム内でのコミュニケーションの重要性です。分析に取り組む際は、目的や比較する基準についてメンバー全員で認識を合わせることが不可欠であると実感しました。 業務の実態は? 私の担当業務は中小企業向けのインサイドセールスの運営です。日々、コール数、コール時間、商談化数、受注数といった指標の管理に努めるとともに、受注商材の傾向やメール配信からの顧客獲得状況なども活用しています。これらのデータを比較する際には、まず各項目の条件が揃っているか、そもそもの目的は何かを確認することを常に意識しています。 成果向上のヒントは? 今後は目的や比較基準の確認を徹底し、チーム全体で正しい分析の考え方を共有して、より成果が出る体制を築いていきたいと考えています。

データ・アナリティクス入門

要素分解が開く学びの扉

分解と分析はどうする? 分析を行う際は、まず対象を要素に分解することが重要です。ロジックツリーやMECEの考え方を活用し、問題解決のステップとしてWhat、Where、Why、Howに分けることで、あるべき姿と現状、そして現状と理想のギャップを正確に把握できるよう心がけています。 店舗のギャップは? また、実務の現場では、宿泊客のデータ比較や社内の研修で、グループ内の各店舗のありたい姿を設定し、現状とのギャップを店舗ごとに分析する取り組みが行われています。このような分析により、各店舗の改善点が明確になり、実効性のある対策が立てられるようになっています。 研修資料はどう整える? さらに、新入社員向けの研修資料作成においてもMECEを意識し、内容を整理することが求められています。現状、社内向けの資料が十分に整備されていないため、今回学んだことを活用して、より実用的で分かりやすい資料作りに努めています。 口コミ低評価をどう克服? 口コミ評価が低い店舗を訪問する場合、現状とあるべき姿のギャップを3つ以上洗い出し、具体的な改善点を見つけることが求められます。初回の動画視聴だけでは本質を理解しきれないため、何度も視聴しながら自分の手でメモを取ることで、理解と記憶の定着を図っています。

データ・アナリティクス入門

数字に魅せられる!学びの実験室

数値とビジュアルの関係は? データ比較の際、数字に注目し、その数値をビジュアル化することで、数式に基づく関係性を把握することの重要性を学びました。大量データの分析では、目的を明確にした上で仮説を立て、データ収集を経てその検証を行うプロセスが大切であると感じました。また、分析する際には、単純平均だけでなく加重平均や中央値、さらには散らばりを示す標準偏差といった代表値を活用することで、より深い理解が得られると実感しました。 散らばりの意味は? 特に、データの散らばりに注目することで、数値の乖離をどのように防ぐかという点が印象に残りました。数値の集約や分布の理解は、分析の精度向上に大きく寄与すると考えています。 売上推移の分析は? 実績報告書の作成においては、単月売上や累計売上の推移を把握するため、商品別や販売先別の分析が有効であると思います。各取引先に対する実績や、特定商品の業績分析を行う際には、加重平均や中央値を用いて売上の平均成長率を求め、業績の変動理由について目的に沿った仮説を立て、データ収集と検証をする手法が有用だと感じました。 分布の理解は? また、正規分布の説明では、標準偏差に関する具体例の一部が分かりにくかったため、さらなる理解を深める必要があると感じました。

データ・アナリティクス入門

目的を定め柔軟に切り拓く

なぜ仮説が必要なの? 分析においては、単にデータを整理して新しい気づきを提供するだけではなく、自分自身で仮説を立て、その仮説に基づいてどのような分析を行いたいか、また必要なデータは何かを考えることが重要だと学びました。以前は無意識に必要なデータを集めていたこともありましたが、目的を明確にすると分析のアプローチが大きく変わると感じます。同時に、立てた仮説に囚われることなく、他の可能性も公平に検討するスキルを身に付ける必要があると認識しました。 市場と売上の本質は? また、毎日の売上実績の確認は、単純に前年との比較やKPIの向上を狙うだけでなく、競合他社のマーケット動向や顧客へのアプローチについても視野を広げることが求められます。一社だけではなく、3Cの観点から広く分析することで、データが十分でなくても次の一手を打つための新たな視点が得られると考えています。 データ活用の秘訣は? 日々の実績やKPIのチェックに加えて、整理したデータをどう活用するか、チャレンジ精神を促す分析やその見せ方を意識することが必要です。競合の市場シェアデータなどを随時入手し、自分の活動が先月や過去と比べてどのように変化しているのかを具体的に確認できると、より実践的な行動変化にもつながると期待しています。

アカウンティング入門

資金戦略が導く成長のヒント

自己資金と銀行利用の違いは? 同じカフェの経営においても、経営方針が異なることで運営方法が大きく変わることを理解しました。特に、自己資金だけで事業を回す場合、拡大や発展に限界があることが明確になりました。一方で、銀行などからの資金調達を活用することで、事業と利益の拡大を狙えるため、戦略上の重要性を実感しています。 BSの違いはどこ? また、現在管理している子会社のバランスシート(BS)を比較すると、同じ業種であっても資金調達方法に大きな差があることが見受けられます。ある会社はレバレッジを最大限に活かして成長を追求するのに対し、別の会社は豊富な現金を保有し、限られた資産の中で運営しています。このような異なる経営アプローチが互いの特徴として表れているため、双方の良い点を共有しシナジーを生み出したいと考えています。そのためにも、BSの理解をさらに深める必要性を感じています。 情報共有の意義は? さらに、企業や業種ごとのBSの違いについて少しずつ理解が進んできたと感じています。上場企業の決算資料も確認し、経営者の考えや方針を読み解くことで理解を深めることを目指します。自分だけの学びに留まらず、部内で情報を共有し合い、互いに教え合うことで知識を確実なものにしていきたいと思います。

アカウンティング入門

借金は脂肪?魅惑の財務ボディ論

借金はどう捉える? 財務諸表が人間の体格になぞらえられているというアナロジーは、とても分かりやすく感じました。借金を脂肪に例える表現も印象的で、これが必ずしも悪いものではなく、銀行から資金調達できるということは一つのステータスであり、信頼性の証ともなり得ると理解しました。重要なのは、提供したい価値を生み出すために必要な投資規模を把握し、その資金調達手段として借金を活用すること、そして返済計画を明確にすることで無理のない資金運用を実現する点だと思います。 循環の仕組みは? また、社内研修を企画する際には、ビジネスモデルとバランスシートの特徴を関連付け、損益計算書の利益が純資産にどのように組み入れられているかという循環を整理することが効果的だと感じました。さらに、その循環を実感できるよう、経年変化を踏まえた説明を加えることや、競合のデータとも比較することで、資料全体の説得力を高める手法が有用だと考えます。 銀行選びの視点は? 先日、ある新聞で地方銀行が都市部での融資を増やしているとの記事を拝見しました。これは、本拠地での魅力的な融資案件が少ないことへの対応策と捉えられますが、一方で、融資を受ける企業がどのような観点で銀行を選んでいるのかという点にも大変興味をそそられました。

データ・アナリティクス入門

視点が変わる数字の物語

視点と標準偏差は何? 「分析は比較である」という考えから、視点やアプローチの違いが明確に見えてくることを学びました。数学が苦手な自分にとっては難解な点もありましたが、標準偏差の活用方法などを理解できたのは大きな収穫です。また、単純平均、加重平均、幾何平均、中央値といった代表値と、散らばりを示す標準偏差の違いについても理解を深めることができました。 集約方法はどうなっている? これまではエクセルで作成できるグラフからなんとなく情報を把握していたのに対し、今回体系的に数字の集約方法を学んだことで、今後はどのように数字を集約すべきかを意識して活用していこうと思います。特に幾何平均は初めての使用なので、さらに調査を進める予定です。標準偏差についても、その考え方から算出方法を追求するのが面白いと感じました。 分析の流れはどう進む? 前回からの繰り返しになりますが、分析のアプローチ―目的の確認、仮説の設定、データ収集、仮説の検証―を守りながら、視点と手法を適切に用いることを今後も意識していきたいと思います。幾何平均や標準偏差はまだ完全に理解できていないため、さらに勉強を重ねる必要があると感じています。テストの品質評価においては、標準偏差や中央値の考え方を取り入れていく予定です。

マーケティング入門

戦略で勝つ!実践マーケの秘訣

商品の価値はどう見る? 新商品の導入にあたっては、その商品の価値自体に加え、利用する状況や場面に潜むニーズも合わせて検討が必要です。イノベーションの普及要件として考えるべき5つのフレームワークの中で、特に可視性や比較優位性がどのように発揮されるかが大きなポイントとなります。 マーケティングとは何? また、セグメンテーションとターゲティングの観点からは、従来の3Cの知識に加え、経営資源の効率的な活用も求められます。マーケティングの基本は、顧客のニーズを正確に把握することであると再認識させられました。 SNS投稿は見直す? この学びを活かし、SNSでの投稿内容の見直しに取り組むことが重要です。可視性と比較優位性を意識した文言の選択やフィードの作成を行い、訴求力の高いコンテンツへとブラッシュアップする必要があります。 ターゲットはどう決める? 更に、ターゲットの絞り込みについては、年齢や地域、性別、思考性だけでなく、ユーザーの状況や環境といった面も考慮し、3種類ほどのペルソナに分類するなど、より具体的なターゲット設定を目指します。 施策で何が変わる? これらの施策が、新商品の魅力を正しく伝え、顧客の興味を引くマーケティング活動へとつながると考えています。

「活用 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right