データ・アナリティクス入門

学びを視覚化!分析新手法の魅力

原因の仮説ってどう考える? 原因の仮説を考える際、思考の幅を最大限に広げることが重要だと実感しました。また、「問題に関係がありそうな要素」と「それ以外」という対概念を活用する考え方は、比較の観点からも非常に有用であったと感じています。講義で「分析は比較である」と最初に言われたことを思い出し、理解を深める手助けとなりました。 分析手法は何が新しい? プロセスウォーターフォールという、これまで自身で作成したことのなかった分析手法に触れることができ、今後の業務にも取り入れていきたいと考えています。業務上このような図を目にする際には、どのような観点で分析が行われているのかを意識して見るよう努めたいと思います。 視覚化で伝わるの? また、ファネル分析による絞り込みについては、これまでも暗黙的に業務で活用していた部分がありました。しかし、他者とのコミュニケーションにおいて、自分のイメージが十分に伝わっているかどうか不安に感じるため、今後はファネル分析やプロセスウォーターフォールといった手法を視覚化しながら議論を進めることを自分に推奨していきたいと思います。

データ・アナリティクス入門

平均だけじゃないデータの真実

データ比較は何が目的? データ分析において、比較は重要な手法です。たとえば、単純平均は代表的な指標ですが、これだけでは散らばりの情報が反映されず、重要なデータが見逃される危険性があります。そこで、標準偏差や中央値など、状況に応じたさまざまな指標を併用することで、より正確な分析が可能となります。また、グラフ化することにより、傾向を把握しやすくなり、新たな仮説を立てやすくなるという利点もあります。 サイト指標をどう考える? Webサイトにおける各種指標の検討でも、従来の単純平均だけでなく、データのばらつきを反映させる標準偏差の計算や、グラフを用いたビジュアル化が重要であると考えられます。こうした手法によって、これまで気付かなかった仮説を発見する可能性が広がります。 仮説検証はどう進む? 現在実施しているWebサイトのデータ分析についても、今回学んだ各種指標を活用し、改めて平均値の計算やヒストグラムによる可視化を行います。その上で、従来の仮説が成立しているかどうか、また新たな仮説が導き出されるかを検討し、反復的な検証により、より多角的な分析を進めていく予定です。

データ・アナリティクス入門

平均値だけじゃ見えない真実

データはどう活かす? データは単に眺めるだけでは意味がありません。他のデータと比較することで初めてその意味が明らかになります。また、数値化やデータの加工を行うことで、より多くの情報が見えてきます。代表的な統計量を見ることで全体の傾向を把握できるものの、平均値だけではデータのばらつきを捉えきれないため、標準偏差の確認やグラフ化によって視覚的に捉えることが重要です。 グラフ作成はどう選ぶ? 多くの数値データを扱う際には、経時変化を示すグラフを活用することも大切だと感じます。ただし、複数の要素が存在する場合、どの部分をグラフ化するかの選択は慎重に行う必要があります。あらかじめ目的に沿った問題箇所を整理し、具体的にどの要素が有効かを明確にした上でグラフ化する習慣を身につけたいと思います。 数値の裏側を探る? 業務でデータを加工したり、調査を行う場合、平均値が頻繁に目に入りますが、その数字の背後にあるばらつきを意識することが欠かせません。単純な数字に惑わされず、加重平均や幾何平均といった他の代表値も適切な場面で選択できるように、知識を深めていきたいと考えています。

アカウンティング入門

家庭にも役立つ「バランスシート」の発見

バランスシートの理解を深めるには? これまで社内研修などでバランスシートについて簡単な説明を受けることがありましたが、あまり理解できていませんでした。しかし、今回の学習で「右が資金の集め方、左がその使い方」とシンプルに説明してもらったおかげで、自然と理解できたことが有益でした。 家庭でのバランスシート活用法は? 私は経営部門には所属していないため、バランスシートを直接仕事で活用する機会は少ないと思います。それでも、競合企業のビジネスモデルを分析する際のツールとして使えるかもしれないと感じました。また、仕事だけでなく、自分の家庭のバランスシートを見直すのも有益かもしれないと考えました。 自己資本比率をどう比較する? まずは、自社が公開しているバランスシートを確認し、経営状況の健全性、特に自己資本比率などを他社と比較したいと思います。しかし、自社全体のバランスシートを確認しても、直接的な自分の業務とは関わらないため、自分の生活に特化して状況を把握できるよう、家庭のバランスシートを確認してみたいと考えました。

データ・アナリティクス入門

仮説の立て方で差がつくビジネス成果

データ比較はどう捉える? データは比較によってその価値が際立ちます。「何と比較するか」が特に重要です。仮説を立てる際には、フレームワークを活用し、網羅性を確保することが肝心です。また、仮説を切り捨てる際には、なんとなくではなく、はっきりとした理由を持って切り捨てることが必要です。 商品の見直しはどう? 売上が低迷している商品のリニューアル方針を考える際には、自社および他社の新商品や売上が好調な商品、不振な商品の販売動向や購買者の分析が求められます。特に間接競合においては、「何と比較するか」の経験的な蓄積があまりないため、これは大いに活用できる視点です。新商品のコンセプト評価が芳しくない場合には、方向転換も検討すべきです。 仮説検証の鍵は? 仮説を立てるプロセスでは、前提を疑い、フレームワークの活用や他部署からの意見を取り入れることで、網羅性を持たせることが重要です。仮説を検証する際には、比較対象を慎重に選ぶ必要があります。また、仮説を絞り込む段階では、切り捨ててよい理由を明確にしておくことが、今後同様の案件が発生した際にも活用可能な知見となります。

データ・アナリティクス入門

仮説検証が開く未来への扉

原因究明の方法は? 問題の原因を探る場合、詳細に分けて確認しボトルネックを明確にすることで、問題の把握が容易になると感じました。 A/Bテストって有効? また、A/Bテストの概要とその活用方法について学ぶ中で、短期間で仮説の検証と効果測定が可能であること、さらに実際にある国の大統領選挙でも用いられていた実例から、有用性の高さを実感しました。 顧客接点をどう増やす? 担当顧客をセグメントに分け、各セグメントごとにデジタルを活用して顧客とコミュニケーションの機会を生み出す取り組みも印象的でした。例えば、メルマガ配信では、メールのタイトルや構成が開封率やクリック率にどう影響するかを比較する際に、A/Bテストが効果的に活用できそうだと感じました。 テスト後の活かし方は? 実際にA/Bテストを行う際は、1要素ずつ変更し、同一期間でのテスト実施により正確な効果測定ができるよう学んだ内容を参考に実践しています。実施後は、単にテストを終えるのではなく、振り返りの分析をしっかり行い、その結果を次回のテストに活かすことで、継続的な改善につなげています。

データ・アナリティクス入門

数値の裏に潜む学びのヒント

データ比較の基本は? データ分析は比較という原則に基づいており、数値同士の比較を通してデータの実態や分布を探る作業です。まず、データの中心に位置する代表値を把握し、その上でデータがどのように散らばっているかを確認することが基本となります。代表値としては、単純平均のほか、加重平均、幾何平均、中央値が用いられ、散らばりを評価するには標準偏差の算出が有効です。 業務で分布を確認すべき? 普段の業務においては、データの分布を確認する試みが十分になされていないと感じます。分布を求めるためには、まずデータを分類するための項目が必要です。そのため、データ加工を前提として目的を明確にしながら項目を選定することが重要です。分析の目的と加工という手段を意識して検討することが、成功のポイントだと実感しました。 算出方法をどう活かす? 今回紹介された算出方法を効果的に活用するためには、標準偏差の算出、ヒストグラムの作成、加重平均や幾何平均を使いこなすスキルが求められます。今後は、これらの技法を実践的な練習問題などで訓練し、習得していきたいと考えています。

データ・アナリティクス入門

データ分析で見えてきた課題解決のコツ

データ分析の重要性とは? データ分析において重要なのは比較することです。データは分かりやすく加工して活用する必要があります。また、私自身が特に気をつけたいのは、目的を決めてから行動することです。課題がどこにあるのか、なぜそうなっているのかを考え、選択肢を出してから仮説を立てて進めることが大切です。 売上向上に必要な行動は? クライアントの課題解決に際しては、大きな目的である売上向上に対して、小さな目的を設定してから行動する必要があります。どこに課題があるのか、仮説を持ってヒアリングを行いたいと思っています。また、自身の営業計画立案においても、既存の課題や理由だけでは向上しないため、繰り返し検証して精度を高めていきたいです。 ヒアリングの視点はどうする? 具体的には、クライアントヒアリング時において、「What」「Where」「Why」「How」という観点から文章を用意し、必要に応じて「あるべき姿」とのギャップについて整理していきたいと考えています。自身の営業計画についても、現時点で考えている課題と理由を再検討し、改善を図りたいと思っています。

データ・アナリティクス入門

比較思考がひらく未来への扉

目的と仮説はどう? WEEK1で学んだ内容を振り返る中で、データ分析は「比較」を基本として行われると再認識しました。まず、目的を明確に定め、自分なりの仮説を立てた上で、必要なデータを収集し、分析を実施することで、目標達成のための示唆や考察が導き出されることが理解できました。 解決手順はどう? 問題解決の過程では、「What, Where, Why, How」といった基本ステップを踏むことが大切ですが、これに加えてロジックツリーやMECE、3Cや4Pといったフレームワークを活用することで、より効果的に仮説が立てられると感じました。 データから何得る? また、数字や数式での集約やグラフによる可視化が分析をサポートし、実数と率の両面からのアプローチが有効であると学びました。同時に、既存のデータだけに頼るのではなく、必要なデータを自ら収集する努力と、都合の良いデータに偏らない分析の姿勢が重要だと痛感しました。実施前後の比較を通じて施策の効果検証を行う場面も多く、今期の採用活動の変革を始めとした各施策の評価に、この学びを活かしていきたいと考えています。

データ・アナリティクス入門

仮説検証で未来を切り拓く一歩

なぜ仮説検証が必要? 今回の振り返りを通じ、まず仮説検証の重要性を再認識しました。数字を単に眺めるだけではなく、要素ごとに分解し、さまざまな仮説を立てながらデータを検証のツールとして活用する方法が有効だと感じました。また、比較を意識した分析を行うために、率や代表値を用いる手法が非常に効果的であるという考えにも改めて気づかされました。 実績把握で何が変わる? これらの学びは、月次実績の把握や事業計画の検討にも応用できます。過去の実績に基づいて仮説を立て、検証を重ねることで、次年度への具体的な打ち手が明確になっていくと実感しました。前年同月比や前年同期比を活用する手法も、現業務において引き続き継続し、より深い分析に結びつけたいと考えています。 復習と共有で成長は? また、ナノ単科の画面が見られなくなる前に、回帰分析や代表値の部分をしっかり復習し、自分の知識として定着させることが必要だと感じました。さらに、アウトプットの重要性を痛感したため、自ら立てた仮説や検証結果を周囲と共有し、意見を取り入れることで自身の成長を一層促進していきたいと思います。

データ・アナリティクス入門

ナノ単科で見つける学びの扉

自分の学びを振り返る? 自分の言葉で学んだ内容を整理する機会が多く設けられており、復習の面でとても有意義でした。また、これまで習得してきた分析手法を再確認できた点も良かったです。ライブ授業の録画を用いた例題で、実際に手法を振り返るとともに、他の受講生のコメントからうまく言葉にできなかった点もしっかり復習できました。 分析と仮説はどう築く? 実務においては、まず「what」「where」「why」「how」のステップを踏みながらアンケート分析を行い、仮説検討の際にはフレームワークを活用して網羅的に考えることを重視したいと考えています。さらに、「選んで比較」を繰り返すことで、最終的に一つのストーリーとして筋を通す資料を作成できると思います。 実践経験はどう見る? 6月下旬から予定されている社内のアンケート分析において、これらの手法を実践していく所存です。一方で、実践経験が不足している点は課題と感じています。そこで、実務以外にも統計局のデータを用いて地域ごとの人口動向とその原因について検討するなど、さらなる練習機会を積極的に設けたいと思います。

データ・アナリティクス入門

変化を捉え、採用戦略の新しい視点を獲得

「分析は比較なり」とは? 「分析は比較なり」という言葉が強く印象に残りました。これまで、分析を行う際にはひとつの情報やデータから何かを導き出そうとすることに注力しがちでした。しかし、適切な対象と比較を行うことが重要であることに改めて気づかされました。データ加工が目的化し、肝心な分析がおろそかにならないよう、「何のための分析なのか」を明確にすることが大切だと学びました。 採用戦略にデータ分析をどう活かす? また、この知見は顧客企業の採用戦略を考える際にも活用できると感じました。顧客が抱える採用課題を解決するためには、現状データ(求職者の動向や志向性など)をもとにボトルネックを分析する必要があります。目標と現状の差を正確に把握するために、今回の学びを活かしてデータ分析を行いたいです。 自分なりの仮説が鍵? さらに、顧客の課題に対して自分なりの仮説を立てること、分析の目的を明確にすることを意識していきたいです。採用市場は日々変化していますが、その変化を「仕方がないこと」と捉えるのではなく、変化の原因や市場の動きを常に考えていくことが重要です。

「活用 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right