データ・アナリティクス入門

合宿で描く未来のマーケ戦略

方向性はどう決める? 来年度に向けた部としての1年間の方向性とTODOを検討する合宿で、今回学んだ内容を活かすことができると感じました。合宿では、現状できていることとできていないこと、そして今後必要なソリューションについて話し合いました。具体的には、今後重要になると予想される広告指標について、各ソリューションごとの導入実績を比較し、2024年の傾向を把握することが求められると認識しました。また、現状のホットなマーケティングトピックから、今後伸びるであろうKPIを仮定し、その上でどのようなソリューションを開発すべきかを検討しました。 情報はどう集める? さらに、分析においては、情報やデータの収集方法が非常に重要であると感じました。普段あまり活用していなかった社内のポータルや事例集なども積極的に利用し、必要な情報が何か、足りない情報はないかを意識しながら、学んだプロセスに沿って分析に取り組んでいくつもりです。 分析の進め方は? また、データ分析の基本として、目的を明確にし、仮説思考でアプローチすること、比較を重視すること、そしてwhat→where→why→howというプロセスで考えることの重要性を再確認しました。これらの考え方を実践することで、より具体的な分析結果が得られると実感しています。

データ・アナリティクス入門

比較と目的で開く新発見

何を比較すべき? 分析について学んだことは大きく3点あります。まず、分析は何かと何かを比較することで初めて意味を持つという点です。単に数値を並べるだけではなく、比較対象を明確にすることで発見が生まれます。 目的は何か? 次に、分析には明確な目的が必要であるということです。目的がはっきりしていなければ、どの数値を見て何を判断すべきか分からず、結果として行き当たりばったりな分析になってしまいます。 チーム連携はどう? そして、チーム内でのコミュニケーションの重要性です。分析に取り組む際は、目的や比較する基準についてメンバー全員で認識を合わせることが不可欠であると実感しました。 業務の実態は? 私の担当業務は中小企業向けのインサイドセールスの運営です。日々、コール数、コール時間、商談化数、受注数といった指標の管理に努めるとともに、受注商材の傾向やメール配信からの顧客獲得状況なども活用しています。これらのデータを比較する際には、まず各項目の条件が揃っているか、そもそもの目的は何かを確認することを常に意識しています。 成果向上のヒントは? 今後は目的や比較基準の確認を徹底し、チーム全体で正しい分析の考え方を共有して、より成果が出る体制を築いていきたいと考えています。

データ・アナリティクス入門

仮説と現場で読み解く数字の物語

現場で何が起きる? 平均値などの代表値を把握するだけではなく、現場で実際に何が起きているかを想像しながらデータに向き合うことが大切です。そのため、自分自身で仮説を立て、仮説検証型で分析を進めることが求められます。分析の目的に応じて比較する対象も変わるため、たとえば「夏の気温は本当に上昇しているのか」という問いに対して、単純に1年前のデータや他の地点のデータと比較するだけでは、十分な答えは得られにくいでしょう。 ビジュアルで何が分かる? また、代表値の理解をより精緻なものにするために、データのビジュアル化を試みることが重要です。第三者に伝えるときだけでなく、自分自身で数値を分析する際にも、数字だけでは見逃しがちな現場の情報に焦点を当てるため、ビジュアル化の活用を心がけましょう。 AI活用はどう役立つ? さらに、医療施設ごとの売上や従業員ごとの活動履歴など、大量かつ複雑なデータに関しては、定型的な加工に陥りやすい傾向があります。まずはデータの分布を把握するためのビジュアル化を行い、分析の目的に合ったデータの特徴を考察する時間を確保することが推奨されます。このプロセスにはAIの活用が有効であるため、迅速に作業に取り掛かれるよう、使用するプロンプトをあらかじめ保存しておくと便利です。

データ・アナリティクス入門

複数仮説で戦略を変える瞬間

仮説立てのヒントは? 課題に対して仮説を立てる際は、単に漠然とアイデアを出すのではなく、4Pや3Cといったフレームワークを活用することで、課題を整理して考える助けになると実感しています。また、具体的な問題解決に向けては、何が問題なのかという複数の仮説を立て、「どこに、なぜ、どうすべきか」という各段階を順に確認することで、より深く掘り下げた対策を見出しやすくなると考えています。 戦略の裏側は? 自身の業務を振り返ると、これまでは業務課題に対して仮説を立て、深堀りして解決策を導くというプロセスが不足していたと感じています。課題を分解して深く検討するステップを踏まず、思いついた打ち手に頼ることが多かったと思います。今回の学びを通じて、今後は課題に対して複数の仮説を立て、どの対策を実行するのが最適かを十分に検討する習慣を身につけ、より深い洞察に基づいた戦略立案を目指したいと考えています。 次は何を選ぶ? さらに、解決すべき課題に対して複数の仮説を立て、それぞれの対策を検討し、最終的に比較検討して選択する業務の流れが重要だと認識しました。今後、事業戦略の立案を進める中では、仮説立てや深掘り、そして対策の選択というステップを必ず踏むことで、より質の高い戦略を策定していきたいと思います。

データ・アナリティクス入門

要素分解が開く学びの扉

分解と分析はどうする? 分析を行う際は、まず対象を要素に分解することが重要です。ロジックツリーやMECEの考え方を活用し、問題解決のステップとしてWhat、Where、Why、Howに分けることで、あるべき姿と現状、そして現状と理想のギャップを正確に把握できるよう心がけています。 店舗のギャップは? また、実務の現場では、宿泊客のデータ比較や社内の研修で、グループ内の各店舗のありたい姿を設定し、現状とのギャップを店舗ごとに分析する取り組みが行われています。このような分析により、各店舗の改善点が明確になり、実効性のある対策が立てられるようになっています。 研修資料はどう整える? さらに、新入社員向けの研修資料作成においてもMECEを意識し、内容を整理することが求められています。現状、社内向けの資料が十分に整備されていないため、今回学んだことを活用して、より実用的で分かりやすい資料作りに努めています。 口コミ低評価をどう克服? 口コミ評価が低い店舗を訪問する場合、現状とあるべき姿のギャップを3つ以上洗い出し、具体的な改善点を見つけることが求められます。初回の動画視聴だけでは本質を理解しきれないため、何度も視聴しながら自分の手でメモを取ることで、理解と記憶の定着を図っています。

データ・アナリティクス入門

目的を定め柔軟に切り拓く

なぜ仮説が必要なの? 分析においては、単にデータを整理して新しい気づきを提供するだけではなく、自分自身で仮説を立て、その仮説に基づいてどのような分析を行いたいか、また必要なデータは何かを考えることが重要だと学びました。以前は無意識に必要なデータを集めていたこともありましたが、目的を明確にすると分析のアプローチが大きく変わると感じます。同時に、立てた仮説に囚われることなく、他の可能性も公平に検討するスキルを身に付ける必要があると認識しました。 市場と売上の本質は? また、毎日の売上実績の確認は、単純に前年との比較やKPIの向上を狙うだけでなく、競合他社のマーケット動向や顧客へのアプローチについても視野を広げることが求められます。一社だけではなく、3Cの観点から広く分析することで、データが十分でなくても次の一手を打つための新たな視点が得られると考えています。 データ活用の秘訣は? 日々の実績やKPIのチェックに加えて、整理したデータをどう活用するか、チャレンジ精神を促す分析やその見せ方を意識することが必要です。競合の市場シェアデータなどを随時入手し、自分の活動が先月や過去と比べてどのように変化しているのかを具体的に確認できると、より実践的な行動変化にもつながると期待しています。

アカウンティング入門

資金戦略が導く成長のヒント

自己資金と銀行利用の違いは? 同じカフェの経営においても、経営方針が異なることで運営方法が大きく変わることを理解しました。特に、自己資金だけで事業を回す場合、拡大や発展に限界があることが明確になりました。一方で、銀行などからの資金調達を活用することで、事業と利益の拡大を狙えるため、戦略上の重要性を実感しています。 BSの違いはどこ? また、現在管理している子会社のバランスシート(BS)を比較すると、同じ業種であっても資金調達方法に大きな差があることが見受けられます。ある会社はレバレッジを最大限に活かして成長を追求するのに対し、別の会社は豊富な現金を保有し、限られた資産の中で運営しています。このような異なる経営アプローチが互いの特徴として表れているため、双方の良い点を共有しシナジーを生み出したいと考えています。そのためにも、BSの理解をさらに深める必要性を感じています。 情報共有の意義は? さらに、企業や業種ごとのBSの違いについて少しずつ理解が進んできたと感じています。上場企業の決算資料も確認し、経営者の考えや方針を読み解くことで理解を深めることを目指します。自分だけの学びに留まらず、部内で情報を共有し合い、互いに教え合うことで知識を確実なものにしていきたいと思います。

データ・アナリティクス入門

視点が変わる数字の物語

視点と標準偏差は何? 「分析は比較である」という考えから、視点やアプローチの違いが明確に見えてくることを学びました。数学が苦手な自分にとっては難解な点もありましたが、標準偏差の活用方法などを理解できたのは大きな収穫です。また、単純平均、加重平均、幾何平均、中央値といった代表値と、散らばりを示す標準偏差の違いについても理解を深めることができました。 集約方法はどうなっている? これまではエクセルで作成できるグラフからなんとなく情報を把握していたのに対し、今回体系的に数字の集約方法を学んだことで、今後はどのように数字を集約すべきかを意識して活用していこうと思います。特に幾何平均は初めての使用なので、さらに調査を進める予定です。標準偏差についても、その考え方から算出方法を追求するのが面白いと感じました。 分析の流れはどう進む? 前回からの繰り返しになりますが、分析のアプローチ―目的の確認、仮説の設定、データ収集、仮説の検証―を守りながら、視点と手法を適切に用いることを今後も意識していきたいと思います。幾何平均や標準偏差はまだ完全に理解できていないため、さらに勉強を重ねる必要があると感じています。テストの品質評価においては、標準偏差や中央値の考え方を取り入れていく予定です。

マーケティング入門

戦略で勝つ!実践マーケの秘訣

商品の価値はどう見る? 新商品の導入にあたっては、その商品の価値自体に加え、利用する状況や場面に潜むニーズも合わせて検討が必要です。イノベーションの普及要件として考えるべき5つのフレームワークの中で、特に可視性や比較優位性がどのように発揮されるかが大きなポイントとなります。 マーケティングとは何? また、セグメンテーションとターゲティングの観点からは、従来の3Cの知識に加え、経営資源の効率的な活用も求められます。マーケティングの基本は、顧客のニーズを正確に把握することであると再認識させられました。 SNS投稿は見直す? この学びを活かし、SNSでの投稿内容の見直しに取り組むことが重要です。可視性と比較優位性を意識した文言の選択やフィードの作成を行い、訴求力の高いコンテンツへとブラッシュアップする必要があります。 ターゲットはどう決める? 更に、ターゲットの絞り込みについては、年齢や地域、性別、思考性だけでなく、ユーザーの状況や環境といった面も考慮し、3種類ほどのペルソナに分類するなど、より具体的なターゲット設定を目指します。 施策で何が変わる? これらの施策が、新商品の魅力を正しく伝え、顧客の興味を引くマーケティング活動へとつながると考えています。

データ・アナリティクス入門

データ分析の基本を理解し深堀り

分析の基本を理解しよう 分析は比較であるという基本を理解することが重要です。目的や仮説をもとに分析に取りかかること、そして問題解決のステップ(What-Where-Why-How)を意識することが求められます。仮説を立てる段階から、何と比較するかを考えながらデータを集め、それを加工・集計し、ビジュアル化することで発見につなげるという手順が大切なのです。 仮説立案の重要性 現在の業務では、多種多様なデータが提示されることが多く、闇雲に分析してしまうことがあります。ここで重要なのは、仮説をしっかり立てて分析に取り組む姿勢を忘れないことです。 データ収集から始めよう 今後の業務では、どのデータを集めるかという段階からスタートします。その際に、学んだことを振り返りながら全体の設計に取り組みたいと考えています。 フレームワークの活用法 今回の講座は自分にとって納得感のあるものでしたが、人に説明や指導するにはまだ至っていません。復習しつつ、意識して普段の業務に当たることで、講座で学んだ内容を自分のものにしていきたいです。特に、フレームワークについては知識としては以前から持っていましたが、きちんと使用したことがなかったため、今後は積極的に活用していきたいと思います。

データ・アナリティクス入門

データが拓くビジネスの未来

分析の本質とは? 分析とは、物事を分け整理することと、比較対象や基準を設けて比較することの両面が本質だと感じました。また、データ分析の目的や、どの項目をどのような形であたりをつけるのかという入り口の考え方も学べ、基本的な考え方がしっかりと理解できたと実感しています. 将来の分析戦略は? 今後は、顧客IDを活用して、CRM、Web行動、イベント、購買実績の時系列統合基盤を構築する力を高めるとともに、ビジネスゴールを離脱点や購買シグナルなどの具体的な分析課題に落とし込むスキルを向上させたいです。また、転換率やLTVなどのKPIを定義し、ダッシュボード上でリアルタイムに可視化しながら、閾値やアラートを設計する能力も伸ばしていく必要性を感じました. 実行計画はどう? 具体的な行動計画としては、まずCRM/MAの構造とAPIについて学び、ダッシュボードの運用や自動連携が自在に行えるレベルまで習熟することを目指します。次に、顧客ID基盤を活用してデータの抽出と整形を行い、分析用CSVを定期的に生成できる仕組みを構築します。さらに、RやPythonを用いた回帰分析やクラスタリングなどの手法を実施し、得られた示唆を速やかに施策へと反映できるサイクルを確立する方針です.

アカウンティング入門

損益計算書で強化する経営力

損益計算書を理解するには? 損益計算書の各項目をしっかり理解することができました。まずは全体をざっくりと観察し、各項目の推移を確認することで事業が順調かどうかを判断できる点が分かりました。また、利益を上げるためには、提供する価値をどのように考えるか、つまりコアバリューをしっかりと描いてブレないことが重要であると強く感じました。コアバリューが揺らぐと、お客様が持つ価値観が崩れ、離れてしまう可能性があると感じました。 コアバリューをどう活用するか? 現在の製品におけるコアバリューとは何かを明確にし、それを意識した利益計画を立てたいと思います。新規開発や生産性向上の施策を講じる際には、生産性を向上させることでコストを下げるのか、無駄を省いて利益を上げるのか、その際に品質が保たれるのかを考えたいです。コアバリューを意識しながら意思決定を行うことができればと考えています。 自部門とどう比較する? 今回の講義では、損益計算書の見方や分析方法を学びました。まずは自部門の毎月の損益計算書と照らし合わせ、現状を把握し、本講義や書籍を参考に自分なりの見解を出してみたいと思います。そのうえで、分からない点があれば、経理や会計に詳しい方に質問してみようと考えています。

「活用 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right