アカウンティング入門

P/LとB/Sで学ぶ実践的経営分析

比較モデルの新たな発見とは? 実在の企業をモデルにした比較は、これまでのカフェ比較に比べて非常にリアリティがあり、面白く取り組むことができました。ただ、P/L(損益計算書)とB/S(貸借対照表)を別々の企業で行うのではなく、同じ企業のP/LとB/Sを同時に見ることで何か傾向を学べれば、より良かったと思います。 P/L活用の具体的方法は? 直近では、自社全体での活用は大きすぎるため、まずは自部門のP/Lを閲覧する際に今回の学びを活かしていきたいです。自部門のP/Lは管理会計であり、財務会計ではないので、今回学習したP/Lと構造が異なります。そこで、一度学習したP/Lに合うように成型し、数字の管理に慣れていきたいと考えています。 数字管理の重要性とは? 現在、私はまだP/Lを直接管理したり、それを基に分析を行ったり、分析を立案する立場にはいませんが、いつでもその業務に携われるように数字の管理に慣れておくことが大切です。他部門と比較して何が違うのかを分析し、必要な改善箇所と具体的な対策を立案していきたいと思います。

データ・アナリティクス入門

データ分析でチーム力: 組織全体を強化する方法

仮説検証の重要性とは? 目的に基づいて仮説を立て、データを収集し、その仮説を検証するサイクル(プロセス)に視点とアプローチを加え、データを読み解くこと。その際、代表値を用いる場合、判断方法には多くの選択肢があり、散らばりも含め、目的やデータ自体に合わせて使い分けることが重要です。また、平均は外れ値に弱いことを忘れず、必要な対処を行うことが大切です。 成績把握のポイントは? 日次や月次ごとの担当者間の成績や能力を把握・分析する際には、課内メンバー間の横比較や個人の推移を確認します。その際、外れ値に注意しながら平均値を用いるのは有効です。これにより、適切な組織の人材配置や各担当者の対応許容量の検証・分析が可能となります。 組織全体の課題解決方法は? 担当者間の成績を日次や月次ごとに分析することで、横比較や個人の進捗を把握し、組織全体の課題解決の促進に向けて適切な手を打つタイミングや個人の対応許容量をデータで分析します。適切に個々の許容量を管理することで、弱点の強化策や適材適所の人材配置の判断材料として活用します。

データ・アナリティクス入門

反論と仮説で広がる新視点

今週の経験に学ぶ? 私は人事部でDXに取り組み、最近はデータ分析を担当しています。今週も経営層からのご指摘があり、改めて反省する機会となりました。レポートの流れに特殊な点がある中で、社会人としての危機感を常に感じながら業務に取り組んでいます。 仮説の意義を考える? 指示内容は、様々な切り口で他社の人事データと比較することと、仮説を複数立てることでした。当初はどちらかに偏り、特に仮説に引っ張られすぎて決め打ちしてしまったため、網羅性が欠けた点がありました。しかし、教材のWEEK04を学ぶ中で、両方の重要性に気づくことができました。 具体策は何だろう? 具体的には、次の3点を意識することにしました。まず、決め打ちによる思考の狭まりを防ぐために、自分自身で反論や反証を考える習慣をつけます。次に、同じプロジェクトのメンバーにも仮説を立てる意義や、仮説作成のポイントを共有し、ディスカッションの時間を確保するようにします。そして、日常生活の中でもフレームワーク(3Cや4P)を意識して活用し、視野が広がるよう努めます。

データ・アナリティクス入門

実践で拓く改善と挑戦

A/Bテストの意義は? A/Bテストは、対象をA群とB群に分け、同時期に検証を実施する比較手法です。工程が少なく導入しやすいというメリットがありますが、比較するポイントを明確にし、他の要素を同一条件に保つ点に留意する必要があります。 時期の違いは問題? テスト対象が別の時期に実施されたものや、大きく異なる要素が含まれている場合、正しい比較が行えなくなるため、十分に注意しなければなりません。 品質会議の狙いは? また、品質管理や作業難易度に関するミーティングでは、参加者にアンケートを実施し、普段の作業の正確さや改善への意識について意見を集めることで、今後の品質管理ミーティングや改善提案に役立てることができると考えています。 学びをどう活かす? 今後は、A/Bテストを活用できるテーマとターゲットを決定し、本日の学びを実践していく予定です。仮説を立てることを前提とし、提案内容が部門方針に合致しているかを意識するとともに、ターゲットが大きく異なる複数の要素で構成されていないことを確認して進めていきます。

データ・アナリティクス入門

仮説×分析で広がる学び

最初の目的は何? 分析に対して明確な目的意識を持ち、初めから仮説を立てるというプロセスは非常に実践的で役立ちました。最初に結論の方針を定め、その上でデータ収集を進める手法は、後の分析をスムーズに導いてくれると実感しています。 データ分解の意味は? また、データを分解し、得られた情報をさらに細かく吟味してストーリー性を持たせる工夫も印象的です。仮説の過程や構成要素を記録しておくことで、最終的な結論と照らし合わせながら再確認するプロセスも納得できるものがありました。 なぜ比較が必要? 加えて、複数の対象者から得られる情報において数を揃えて比較をするという点は、分析結果を信頼性の高いものにするための大切なポイントだと感じました。これにより、結論を支える根拠が一層明確になり、聞き手が納得しやすい資料作りが可能になっています。 学びの意義は何? 全体として、仮説に基づいたデータ収集と詳細な検証、そして論理的なストーリーの構成という一連の手法は、現実の業務においても非常に活用できる貴重な学びとなりました。

データ・アナリティクス入門

データ分析で営業力をアップ!

データ分析の重要性とは? データ分析について、これまで漠然と取り組んできましたが、「データ分析は比較である」という説明が非常に印象的でした。データを扱う際には、その内容をよく考えて、意味を成すものを選別して分析することが大切だと感じました。 営業とマーケティングへの活用 私の仕事は営業とエリアマーケティングを担当しており、売上の変動や要因分析にデータ分析が活用できると考えています。しかし、具体的な活用法についてはまだイメージが固まっていないのが現状です。今後の講義を通じて、どのように自分の仕事に役立てられるかを考えていきたいと思っています。 生産設備におけるデータ活用の可能性 また、私は工場で使用される生産設備の部品販売に携わっています。部品は用途によってさまざまな構成があり、データ分析を通じて顧客がどのようなスペックを求めているのかや、年間でどの程度の生産が可能なのかを理解できれば、マーケティングに大いに役立つでしょう。そのためにもデータ分析に関する書籍や統計学の知識を学ぶ必要があると考えています。

アカウンティング入門

経営指標を活用した成功戦略構築法

売上と利益、見極め方は? 売上高、売上原価、営業利益の構造について、単に売上高が高いというだけでは経営状況を正確に判断するのは難しいと考えています。同様に、売上原価をただ低くするだけでは必ずしも売り上げが伸びるわけではありません。企業の経営戦略と資源配分を意識した仕組みをいかに考えるかが重要だと思います。 競合と比較、どう分析する? 競合企業の構造を理解するためには、複数の企業を横並びで比較し、背景にある状況を仮説を立てながら組み立てることに取り組んでいきたいと考えています。また、異業種を参照し、自企業との比較を行うことで、何が高コストの原因となっているかを特定することが可能です。これにより、より精度の高い分析が可能になると思います。 自動車業界の魅力は? 例えば、自動車メーカーの比較を行う予定です。各企業がどの領域に注力しているのかを分析することで、売上高、原価、営業利益の構造を理解したいと考えています。特に、本業以外の取り組みによる差別化要素があるかどうかも確認したいと思っています。

データ・アナリティクス入門

問題特定力で決算分析を革新する

問題解決の重要性を再認識 問題解決において、「WHAT / WHERE / WHY / HOW」を考慮する重要性について改めて認識しました。特に、問題が何であるかを特定しない限り、分析は始まりません。問題特定の際には、目標と現実、予想と実績などとのギャップに注目することが重要です。 決算分析をどう活用する? 私は、月次および年次決算の分析において、予想や通常の実力値に対する決算実績の原因を分析し、その結果を本社に報告しています。この分析結果を基に、決算短期予想の作成、目標の設定、予算の策定、新商品の販促・マーケティングにも活用したいと考えています。 月次決算分析のステップは? 特に月次決算分析では、問題解決のステップを意識して分析・報告を行っています。昨年平均、昨年同月、前月などと比較し、特殊要因や問題を特定します。決算書は既にある程度ロジックツリーが出来上がっているため、項目同士の比較を通じてギャップを発見し、原因を追究します。そして、必要に応じてツリーをより深く分解していくことが求められます。

データ・アナリティクス入門

データ分析と仮説思考で売上UPを目指す

3Cと4Pをどう活用する? 複数の仮説と網羅的な思考を持つことを学ぶことができました。また、市場、競合、自社(3C)、製品、価格、場所、プロモーション(4P)を意識した仮説構築の重要性も理解しました。データの収集方法については、本当に対象者からのデータなのか、アンケートなのか、口頭なのか、数値なのか、きちんと比較するための収集といった意識も重要だと感じました。 売上向上のための分析法は? 現在、売上が思うように伸びず、分析検証フェーズに入っています。そこで今回学んだ仮説の立て方やデータの取り方を意識しながら、数値を見ていきたいと思います。また、前回のグラフの最適化も考慮に入れつつ、精度の高い分析・検証を行いたいです。 新たな施策提案に必要な視点 さらに、昨年10月から今年6月までの流入数や購入数、広告費などの数値をしっかりと活用し、相関や因果関係を見つけ出し、仮説思考を組み合わせて新しい施策や提案を行いたいと考えています。様々な仮説を一つずつ検証し、網羅的な分析も合わせて行いたいと思います。

クリティカルシンキング入門

資料作成のプロが語る効率向上のコツ

資料作成の工夫は何を意識する? 視覚(資料)を使って相手の理解を促進させるには、読み手の立場に立ち、字体やフォント、色や全体のレイアウトなど細部まで考えることが重要です。また、リード文やグラフを用いる際はシンプルかつ強調できるように情報量の足し算と引き算を意識し、内容により適切なグラフを使用することが求められます。 学びを業務にどう活かす? 社外取引先向けの資料を作成する機会が比較的多いため、次回作成時からこの学びを活用したいと思います。また、社内資料の作成においても社外向けのメリハリを意識することで、今回の学びを自身の業務で活用できるよう訓練したいです。 新しい習慣をどう築く? これまでは慣れや自分の感覚、作成に充てる時間によって主観的に資料を作成していました。しかし、今後は読み手の読みやすさや印象を意識し、作成の過程でチェックを行いたいと思います。さらに、作成前に全体を考える時間を確保し、修正の時間も考慮することで効率も良くなると思いますので、そういった新しい習慣を作りたいです。

データ・アナリティクス入門

新しい方法論で業績アップを狙う!

分析の重要性とは? 今週の学習で重視したポイントは、分析は比較であるということです。また、「Apple to Apple」を意識し、適切な比較要素を抽出することも重要です。過去の方法が最善だったのか、新たな方法論があるのか、今後の講義を通じてさらに学びを得たいと考えています。 業績分析をどう活用するか? 私は、自部署の業績分析や戦略策定にこの学びを活用しようと考えています。新規案件の獲得状況や既存案件のプロジェクト収支など、必要な情報を精査し、分析を進めたいと思っています。この分析を基に、新規提案活動、適切なリソースの配置、社員教育など、部門運営の戦略立案に役立てることを目指しています。 情報収集の方法は? はじめに、営業部からのパイプライン情報の共有、リソース計画、メンバーの稼働率、プロジェクトステータス、メンバーのスキルマップなど、各方面からの情報収集を徹底することが必要です。これらの情報を活用し、現状の組織における問題点を把握し、効果的な戦略策定につながるよう努めたいと考えています。

データ・アナリティクス入門

エビデンスが示す戦略の新境地

A/Bテストとは? A/Bテストは、データ分析における「比較」の重要性を実感させる手法です。ランダムにサンプルを抽出することで、一定数の調査データから精度の高い結果が得られる点や、どの工程でボトルネックが発生しているか割合を算出できる点に実践的な可能性を感じました。 戦略の判断基準は? 勤務先のイメージ戦略について、2つの側面のうちどちらを強調すべきかは感覚的には把握しているものの、エビデンスが不足しているため不安な面もあります。A/Bテストを活用すれば、どちらがより効果的か明確に判断できるのではという期待から、早速ターゲティングサービスを提供する業者に同様のサービスがあるか確認する予定です。ただし、単純にAかBのどちらかだけではなく、両方を組み合わせた戦略が効果を高める可能性もあると考え、慎重な実施が必要だと感じています。そこでまずは広告代理店に相談し、業界の広報戦略が十分に実践されていない現状を踏まえた実証実験として、自社と共同で取り組める可能性を探るため、休み明けに連絡するつもりです。

「活用 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right