データ・アナリティクス入門

分析を活用した価格設定の秘密

分析の基本とは? 分析とは、比較を通じて事象を理解することです。分析には、数値を基にした定量分析と、事象の背景や流れを検討する定性分析があります。これらの分析は、対象となる要素を分解し、様々な視点から詳細に検討する作業です。重要なのは、データを扱う際に注意が必要であり、異なるものを比較しないようにすることです。すなわち、「Apple to Orange」ではなく、「Apple to Apple」を意識し、見えているものだけでなく、見えていないものも視野に入れながら比較することが求められます。 リゾートホテルの価格戦略 例えば、リゾートホテルにおける宿泊価格の変動を分析する場合、グループ内の直営16施設の過去10年間の売上データを活用することが考えられます。また、旅行サイトの口コミも分析の参考にできます。これらのデータは、特に需要が高まる週末や祝日の売上を最大化するための社内向け資料として活用されます。近年の旅行者数の増加に伴い、これらの変化をデータとして捉えることで、より効果的な意思決定が可能となります。 ダイナミックプライシングの活用 具体的な販売戦略としては、客室は56日前から販売設定されており、分析した資料を元に販売時の価格を提案します。予約の受注数と周辺ホテルの料金を毎週比較し、価格設定の見直しを行います。また、過去10年間の売上データを基に、ダイナミックプライシングを活用して売上が最大化できたかどうかを分析します。このようにして、データ分析を通じて戦略的な価格設定を行うことで、売上の最大化を目指します。

アカウンティング入門

損益計算書で読み解く経営の秘密

損益計算書の本質は? 損益計算書は、企業の運動成績表のようなものです。水泳の例えがしっくりきており、力いっぱい泳いでも、抵抗が大きければ進む距離は短くなります。同様に、しっかりと力を発揮しながらも、無駄な動きを省いて抵抗を減らすことの大切さを学びました。この点から、人やモノがいかに無駄なく効率的に利用されているかという観点も考えるようになりました。 実例で何が分かる? また、カフェのケーススタディや図表を用いた具体的な説明により、それぞれの違いが明確に理解できました。さらに、前年比や同業他社との比較を通して、損益計算書の各指標をどのような観点で見るべきかを学ぶことができました。特に、同業他社との比較は、自社のどの部分が優れているのかを認識する良いきっかけとなりました。 財務分析のポイントは? 具体的には、今後、経営会議で取り上げられる損益計算書についての議題や、月単位で回ってくる損益計算書の分析に積極的に活用したいと考えています。また、自身で損益計算書を見た際に、昨月と比較して原価が高かったり、経常利益が芳しくない場合、その背景にどのような要因があるのかといった疑問を自然に持てるような状況を作り出したいと思います。 情報はどう活かす? 幸運なことに、会社ではこうした財務諸表の情報がオープンにアクセスできる環境が整っているため、朝一番のタスクとしてチェックすることから始めようと考えています。経営会議にも参加できる環境にあるため、会議での発言を通じて、学んだ知識を実践していきたいと思います。

マーケティング入門

イノベーション普及の鍵を掴む学び

イノベーションの普及要件とは? これまで、顧客視点で魅力を追求する重要性を学んできましたが、物が売れるためにはイノベーションの普及要件も重要であることが印象的でした。 イノベーションの普及要件には以下の五つがあります。まず、比較優位性とは従来のアイデアや技術と比較した際の優位性を指します。次に、適合性は生活に大きな変化を強いるものは採用されにくいことを意味します。さらに、わかりやすさは使い手にとって理解しやすく、使いやすいことが重要です。また、試用可能性は実験的な使用が可能であることを意味し、可視性は新しいアイデアや技術を採用していることが周囲から観察されやすいことを指します。 マーケット分析での注意点は? マーケットを年齢や性別のみで捉えるのは危険です。心理的変数や行動変数、成長性、そして競合商品も考慮する必要があります。 提案書改善のために何を意識する? 自社のサービスはBtoBであるため、すべての要件が当てはまるわけではありませんが、比較優位性やわかりやすさ、可視性を意識した見せ方をすることで、提案書の改善が期待できると思います。現在作成中の提案書について、これらの普及要件に当てはめられるか、チームで話し合いたいと思います。 学んだことをどう活用する? 先週、セグメンテーションやポジショニングマップの説明をチームで行い、イノベーションの普及要件についての学びを共有しました。新規案件の提案書作成において、この学びを活用し、提案書のブラッシュアップができるよう、チームでミーティングを行いました。

データ・アナリティクス入門

データ分析で未来を読む: 大学教育の向上指南

データ分析で重要なのは何か? データ分析を行う際には、事実(ファクト)に基づくことはもちろん重要ですが、比較の視点も非常に重要だと学びました。また、見えている事実から見えない事実を推測し考察することも大切です。 分析目的をどう設定する? データ分析の目的を最初にじっくり考えることが重要だと感じました。目的が明確であるならば、そのための準備や材料となるデータも自ずと見えてきます。 上記の内容を自分でしっかり把握した上で、上司や部下に理解してもらうためにどのようにデータを見せるか、プレゼンの仕方も重要です。 大学データをどう活用する? 私は大学に勤務しているため、大学内のさまざまなデータを分析に活用したいと考えています。具体的には、以下のテーマに取り組みたいです: - 入試成績と入学後の成績(GPA)の相関分析 - 入学後の学生生活と卒業時アンケート回答(大学に対する満足度)の相関 - 上記が国籍によってどのような差異があるか - これらのデータをもとに、大学全体として学生に提供する教育やサービスをどう向上させるか 学生の実態をどう把握する? 一例として、学生生活と満足度の相関を探るために、現在の資料を見直し、学生生活の実態を把握するための質問や指標、卒業時のアンケート内容をより充実させたいと考えています。現在のデータをより細かく見ることで、職員である私たちにも見えていない学生の実態があるのではないかと考えています。 さらに、「比較が大事」という視点を持ち、他大学の情報も参考にしたいと考えています。

データ・アナリティクス入門

問題を解決するための分析フレームワーク活用術

問題の絞り込み方法は? 問題の箇所を明確にするためには、まず分析対象を絞り、原因を考えやすくします。また根本的な原因の仮説を立てる際には、3C(市場、競合、自社)や4P(製品、価格、場所、プロモーション)のフレームワークを活用します。そして、仮説に基づいてデータを集めます。この過程では、必要なデータが何かを見極めることが重要です。 仮説構築の多様性は重要? 仮説は複数立てるべきで、決め打ちにしないよう注意します。また、異なる切り口で網羅的な仮説を立てることも大切です。データ収集は、自分で取りに行ったり、誰かに聞いたりして行います。また、比較のためのデータも集めます。さらに、反論を排除するためのデータを集めることも重要です。自分に都合の良い情報だけを集めるのではなく、説得力のある分析を目指します。 データ分析のポイントは? データを見る際には、意図を持って分析します。例えば、問題箇所を絞り込み、フレームワークを活用して根本的な原因の仮説を立てます。その際、異なる切り口から多角的に仮説を立てるよう心がけます。そして、データを集めて比較し、反論を排除するための情報まで踏み込んで確認します。この一連のステップを可視化し、習慣化することが重要です。 どのフレームワークが適切? 仮説を立てるためのフレームワークについては、自分の業務に適したものを探し、過去の事例から有効なフレームワークを検証します。反論を排除する情報を集めるためには、周りのメンバーの協力を得て壁打ちを行い、反論点を意識的に探るようにします。

データ・アナリティクス入門

小さな気づきが未来を変える

問題をどう分解する? 原因を明確にするためには、まず問題を各要素に分解することが重要です。たとえば、「目的は何か」「現状はどこに位置しているか」「なぜこの状況になったのか(仮説)」、そして「どのように解決するか」という視点で考察することで、全体像がより把握しやすくなります。 視点をどう変える? また、対概念を活用することで思考の幅が広がります。自分たちの要因にとらわれるのではなく、組織外の要因も視野に入れて見直すことで、従来の経験則や主観に偏らない新しい仮説を導き出すことができます。 PDCAをどう運用する? 仮説を実際に試しながら、少しずつPDCAサイクルを回す手法も効果的です。すべてを一気に実施してから「違った」という状況に陥るのではなく、柔軟に軌道修正を行うことで、スピード感を持った問題解決が可能になります。 要因はどう広げる? 日常的に認知から採用までのプロセスを分解して考察する中で、一部の要因に決め打ちしてしまい、他の可能性に目を向けられなかった経験があります。そこで、仮説を決める前にまず対概念の視点を取り入れ、原因を広く探る習慣をつけるようにしています。 逆の視点は何を促す? 採用集客のフェーズにおけるファネル分析では、前年対比や前四半期との比較、さらには得意な動きに対して何が起きているのかを議論するミーティングを実施しています。このような場では、ひとつの方向に偏りがちな意見に対し、意識的に逆の視点を取り入れることで思考を深め、より正しい方向付けを行うように努めています。

データ・アナリティクス入門

データ分析で未来を切り拓く!

初期の分析結果は? 物販店の2割削減商品の仮説では、以下のような視点で分析を行いました。まず、データの重心は平均によって決定し、前年同月との販売比較を行いました。また、客単価や平均購入数、近隣店舗との売り上げ比較、顧客のインバウンド需要が変動した理由として、為替レートや可処分所得の変化にも注目しました。これに加え、アンケート施策も取り入れることで、順序立てて考えられるようになりました。 未知領域はどう? 次に、分析がまだ行われていない未知の領域を探るため、仮説を立てる必要があります。KPI以外のデータも分析の対象とすることで、現状を打破することを目指しています。そのために、データ分析手法に行動経済学や神経経済学の視点を取り入れ、心理的なデータ選択を通じて新しいデータ取得方法を確立したいと思います。最終的には、消費者の満足度や不満足度の要因を数値化し、顧客視点を重視した満足度向上に努めたいと思います。また、大量のデータを扱うため、ビッグデータ解析にも挑戦する予定です。 実務活用の振り返りは? 行動計画としては、本研修で学んだデータ分析や問題解決、仮説思考を実務でも活用していきます。これらのスキルは、データ以外の業務にも応用できると確信しています。研修で実施したことと実務での分析結果を2ヵ月間比較し、自分なりにレビューを重ねて、どれだけ浸透したかを振り返ります。また、ストレッチ領域として、ビッグデータに触れ前処理に苦労すると思いますが、実際に手を動かして経験を積んでいくことから始めていきます。

データ・アナリティクス入門

数字の向こうに見えた本当の学び

数字だけで判断してる? 数字をそのまま見ると、判断を誤る危うさや怖さがあります。実態を正確に把握するためには、数字の中身に潜む意味を紐解き、大枠と詳細を行き来しながら分析する必要があります。 集約方法は適切? そのためには、数値を適切に集約して可視化することが求められます。ただし、集約の方法自体も状況に応じた判断が必要です。数字の意味を正しく読み取り、どの手法で集約すべきかを判断しなければ、誤った方向へ導いてしまうリスクがあります。 どの手法が最適? 何度も試行錯誤を重ね、どの手法が実態を正しく反映しているかを見極めることが重要です。自分が行った集約内容を比較することで、分析の精度を高めることができます。 数字の羅列で判断? 数字が羅列されるだけでは、実績、利益、投資経費といった各状態がどのようなリターンに結びつくのかが明確に見えにくくなります。これらの判断材料を集約し、分散して検討することで、より妥当な判断が可能になります。 見るべきはどこ? また、見るべきポイントを示すことは分析を行う上での基本的なマナーであり、迅速な判断を下す要因にもなります。難しい計算式に頼るのではなく、基本的にはツールやExcel、BI、AIなどを活用して分析を進める場面も多いですが、これらの使い方を根本から学び、センスを磨くことも重要です。 視覚化の工夫は? 単に数字をグラフにするのではなく、伝えたいポイントがしっかりと相手に伝わるビジュアルを作成するために、思考と工夫を重ねる必要があります。

データ・アナリティクス入門

課題解決スキルが劇的に向上する方法とは?

実践による学びの深まり Week1から継続して学び続けた内容を、ライブ授業の演習を通じて「一気通貫」で実施することができ、実践に活用するイメージが具体化しました。特に、仮説は一度立てたら終わりではなく、段階ごとに検証を通じてブラッシュアップしていくこと、また分析は比較であることを強く感じました。さらに、課題解決のプロセスは「What→Where→Why→How」という順序で考えることが重要であると学びました。このプロセスを進める中で、「データのビジュアル化」や「多様な切り口を考えること」の大切さも再認識しました。 課題解決の新たな視点とは? 自分の仕事は基本的に社内の「課題」を解決することが主な業務であり、この講座で学んだ内容はあらゆる場面で活用できると確信しました。これからは、課題解決のプロセス「What→Where→Why→How」を常に意識したいと思います。問題を解決する際には、直ちにデータ分析に取り掛かるのではなく、まず問題の定義から始め、問題点を特定して原因を分析するというプロセスを「事前」に頭の中で描くことが重要です。それにより、無駄な作業やヌケモレを防ぎ、「How」を忘れずに取り組むことが可能です。 事前準備の重要性について 具体的には、すぐに「データ分析」に取り掛からないことを意識的に行い、事前にそれぞれの課題解決プロセスで必要な「タスク」をイメージし、タイムラインを引いて計画を立てることが大切です。最初はしっかりと言語化し、プランをドキュメントに起こしておくことを心がけます。

データ・アナリティクス入門

仮説検証で切り拓く未来

プロセスはどう検証する? 問題の原因を明確にするためには、まずプロセスを分解して検証することが重要です。解決策として、複数の選択肢を洗い出し、しっかりとした根拠に基づいて絞り込む方法が有効だと感じます。 効果はどう比較? A/Bテストでは、施策の効果を比較しながら仮説検証を繰り返します。あらかじめ検証項目を明確に設定し、1要素ずつ検証することが大切です。 データで判断する? データに基づいた意思決定を行うことで、業務の効率化や成果の向上を目指します。日常の仕事の中で仮説を立て、適切なアプローチ方法を模索してきました。過去の経験では、業務過多のため情報共有が主にメールに頼っていた状況もあり、その際はA/Bツールを利用して、理解度や反応の良さといった観点から効果のある方法を試してみました。例えば、メールでの通知と社内共有ドライブへの保管を比較する取り組みが挙げられます。 学びをどう定着? Week5までに多くの分析手法を学びましたが、学んだ内容を自分のものにするためには、メモを振り返りながらフレームワークの活用やデータ加工、さらに比較する際にどのグラフを使用するのが最適かを検討することが必要だと感じています。まずは実践を通じて知識を定着させ、現代ではAIの助けを借りながら調査の時間や手間を省いていきたいと考えています。 新分野はどう理解? また、動画学習を通じてWebマーケティングの指標など新しいエリアにも触れる機会があり、専門外の分野に対する理解がさらに深まったと実感しています。

マーケティング入門

イノベーション成功の鍵:顧客視点の大切さ

イノベーション普及に必要な要素とは? 新商品が普及するためには、イノベーションの普及要件が欠かせないと感じました。具体的には【比較優位】(従来のアイデアや技術に比べた優位性)、【適合性】(生活に大きな変化を強いると採用が難しい)、【わかりやすさ】(使い手にとっての易しさ)、【試用可能性】(実験的な使用が可能)、そして【可視性】(周囲から新しいアイデアや技術の採用が観察できる)といった要素が重要です。これらの要素を理解し、考慮することが必要ですが、何よりも顧客の立場に立って考えることが重要だと痛感しました。 顧客イメージの重要性 さらに、顧客が持つイメージの重要性についても深く理解しました。現在、自社や自部署が行っているバックオフィス業務の効率化を考えた際に、店舗や他の部署へ仕組みの変更を依頼する場面があったのですが、これは今週学んだことを活用する良い機会だと考えました。特に、「適合性」と「わかりやすさ」の視点を忘れがちであることを自覚しました。新商品を成功させるだけではなく、顧客の視点に立ってこうした要素がしっかりと実現されているかを考え、業務設計を行いたいと思います。 仕組み変更時にどう対応する? 具体的に店舗に仕組みの変更を依頼する場合には、相手の立場に立って考え、行動することが重要です。その変更が本当に双方にとってプラスとなっているのか、また、相手が外部の企業であった場合、自社のサービスに対して支払いをしたいと思ってもらえるのかといった視点を持って判断していくべきだと感じています。

アカウンティング入門

P/Lから学ぶ!儲けの本質と経営戦略

P/Lの基本はどうなってる? P/Lを読み解こうとする際に、細かなことまで把握しようとしていましたが、売上と5つの利益をざっくり掴むことが重要であると知り、精神的に楽になりました。その理解をスタートにすることで、会社の状態、すなわちどのように儲けたのか(本業かそれ以外か)、何にお金がかかったのか(原価か販管費か、一時的なものか)を把握するのに非常に効果的だと実感しました。 カフェ経費はどう捉える? ミノルさんのカフェ事業を例に考えた時、コーヒー豆の原価や店舗運営にかかる費用はイメージできました。しかし、上質なサービスを提供するために必要な熟練スタッフの人件費まで考えが及びませんでした。贅沢な時間を提供するのか、日常的にリラックスできるひとときを提供するのかによって、雇うスタッフや研修費用が変わることに気づき、これは貴重な学びでした。 来期計画はどう進む? 来期の事業計画を立てるにあたって、今期までの利益構造を理解し、どう進めるべきか考えることに役立てようと思います。原価削減に向けては、何をどれくらい削減すれば効果的かをシミュレーションして把握し、利益を増やすためにどれだけ情報資産を活用すべきか計算し、イメージを持っておきます。 実践のポイントは何? 11月を通して、次の3点を実践します。まず、自社のP/Lを現在から過去10年遡って、売上と5つの利益を比較します。次に、来期の事業計画で削減すべき原価を明確にします。そして、取引先上場企業5社のP/Lを過去3年間遡って比較してみます。

「活用 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right