データ・アナリティクス入門

データのバイアスに立ち向かう新視点

生存者バイアスのリスクとは? 「生存者バイアス」は、分析を主とする仕事に携わる人でも陥りやすい問題であると実感しました。データの扱い方だけでなく、分析対象の選び方についてもバイアスにとらわれず、ニュートラルに進めることが、自分の課題だと気付くことができました。 目的を明確にする重要性 BPOとして業務に携わっていると、データの使用目的が特に重要である場面が増えると感じています。以前の「マーケティング」という大義のもとでは、目的から外れることは少なかったのですが、目的を明確にすることが、業務全体でますます重要となりそうです。 データの純粋な観察方法 今回の講義を通して、データを純粋に観察する習慣を付け、仮説を立てることを重視し、比較対象が正しいかの確認を怠らないようにしたいと考えています。業務でバイアスの怖さを感じているため、事前の確認によって、バイアスの回避を心掛けたいと思います。

データ・アナリティクス入門

データが照らす改善の道

ABテストの意義は? ABテストを通じて、単にAかBを選ぶのではなく、前提条件を統一した上で比較・検証することが次の施策につながると感じました。問題のある箇所については、プロセスごとに分解し整理することが大切だと改めて認識しました。 数字で何が分かる? また、具体的な数字を取得することで、試行した打ち手がどのような効果をもたらすかを明確にしたいと思います。サイトに限らず、アンケートなどを活用して課題を抽出し、想定される項目のほかに自由記述も設けることで、定量データとして予想外の回答が得られるかどうかを確認できる工夫が必要です。 FAQ改善の狙いは? 業務面では、FAQサイトの問題箇所を特定し、改善案に基づいた比較テストを実施することが重要です。過去のPV数などのデータを把握し、変更後の数値の変化を確認することで、PDCAサイクルを効果的に回していきたいと考えています。

データ・アナリティクス入門

数字で読み解く現場の真実

記述統計量はどう見る? 平均値だけでなく、中央値、標準偏差など他の記述統計量を抽出することで、データのばらつきまで確認できる方法を学びました。この手法は、問題解決の際に誤った仮説を課題と認識しないための一助となります。 現状指標の見直しは? 現在の職場では、平均値、最大値、最小値のみが共有される指標となっているため、今後はQ1で述べた内容も加えて集計を行いたいと考えています。数値だけでは状況が把握しにくいこともあるため、ヒストグラムや散布図などのグラフを活用し、視覚的に理解しやすい資料作成を目指します。 実績可視化をどう進める? また、FY24の実績値集計においては、ヒストグラムや散布図を用いて数値を分かりやすく可視化する計画です。具体的な項目としては、電話数と業務歴、トスアップ数と金額、トスアップ数と受注額、さらにはトスアップ数と年度内受注率の関係性を検証していく予定です。

データ・アナリティクス入門

仮説とデータで見える成功術

A/Bテストの条件は? A/Bテストを行う際には、条件を揃えることや分析対象を明確にすること、そして仮説に基づいた比較検証のポイントを絞ることの重要性を確認できました。また、課題解決に向けた顧客心理に着目したテキストや、ユーザーが行動しやすい要素が重要であると実感しました。 ファネル分析の重要性は? 日々のウェブマーケティング業務において、今回の課題事例から多方面で役立つ考え方を学ぶことができました。特にファネル分析は不可欠であり、全体のマーケティング戦略を踏まえた上で確実に設定し、日々の分析に活用していきたいと感じています。 新たな仮説はどう導く? 今後は、売り上げ向上を目指すサイト改善や広告のA/Bテストにこれらの知見を活かしていくとともに、単一のデータに頼るのではなく、関連する複数のデータを俯瞰的に捉え、そこから新たな仮説を導き出す取り組みを深めていきたいと思います。

クリティカルシンキング入門

心に響く!視覚で磨く伝える力

効果的な視覚情報の秘訣は? 情報を伝える上で、視覚的な情報の作り方が非常に重要であると改めて感じました。伝え方は環境や状況によって異なるため、目的に応じた最適な見せ方を選べるよう、視覚情報の表現方法の幅を広げる必要があります。 自分の視点で見る資料は? 普段目にする資料は、「自分ならどのように作るか」という視点で観察するよう心がけています。また、文章作成時には、アイキャッチの活用、文章の硬軟のバランス、そして読みやすい体裁の3点を常に意識し、読み手の立場に立って内容を確認する習慣を続けています。 プレゼン成功の秘策は? さらに、8月22日に他部署の行動変化を促すためのプレゼンテーションを実施する予定です。資料全体の構成や使用するデータの選定において、目的と対象に合わせた最適な見せ方を意識し、作成内容が理解促進に効果的かどうかを事前に第三者の意見を取り入れて確認する予定です。

クリティカルシンキング入門

イシューで問題解決の道筋を明確に!

問いはどう考える? まず、重要なのは問い(イシュー)を立てることです。この問いは具体的であり、疑問文の形であるべきです。常に問いを考え続けることが求められます。たとえば、南守島のケースでは、データを様々な切り口で分析し、課題を特定し、その解決策を出すという一連の流れを理解しました。 イシューをどう整理する? 議論が多岐にわたると、イシューを見失うことがあります。そのため、一貫してイシューを意識するのが重要です。議事録のヘッダーにイシューを入れることで、会議の開始時にメンバー全員で確認し、共通の認識を持つように心がけると良いでしょう。 会議はなぜ確認する? 会議の最初には、イシューを全員で確認します。また、議論が逸れた場合には、軌道修正のために再度イシューを確認することが必要です。イシューが複数ある場合には、それを構造的に分解し、それぞれ個別に議論する場を設けると効果的です。

データ・アナリティクス入門

比較で見える戦略策定の極意

データ分析の重要性を再確認 「分析は比較」という考え方は、実務において非常に重要であると実感しています。単にデータを集計するだけでは、判断材料とはなりません。そのため、比較や判断が可能な形での分析を常に心掛けています。今回の講義でも、この視点の重要性を再確認しました。 数値比較で客観性を持たせるには? 事業戦略を策定する際には、過去の実績などの比較数値を用いることで、客観的な判断が可能になります。また、「Apple to Apple」の話が示すように、比較する対象を明確にし、条件が一定であることを確保することで、適切な結論を導き出せると考えます。 チームで共有すべき比較意識 さらに、戦略書やプレゼン資料を作成する場合、目的をもって適切な比較対象を用いることで、説得力を高めることが重要です。チームメンバーにもこの意識を共有し、齟齬なく業務を進められるよう努めています。

クリティカルシンキング入門

問い直しで見える新しい景色

問いはどのように設定? 問いを正しく設定することが非常に重要であると実感しました。問いの立て方一つで導かれる答えが大きく変わるため、問題の本質を見極めることが求められます。そのため、データをどの角度や観点から見るかを常に意識し、さまざまな視点から疑問を持って捉える必要があると感じました。また、プロセスを進める中で、最初の問いを再確認し続けることで、答えがぶれずに一貫性を保つことができると考えています。 損益管理で何を問い直す? また、損益管理における課題についても、まず問いが何であるかを改めて考える必要性を感じています。具体的な行動に焦点を合わせがちですが、何が本当の問題なのかを問い直すことに意識を向けることが重要だと思います。さらに、この考え方を自分だけでなく部下とも共有することで、彼らにも問題の本質に気付くきっかけを提供し、共に成長していけるよう努めていきたいと考えています。

データ・アナリティクス入門

データで見つける学びの宝箱

傾向分析はどう見る? データがある場合は、まず全体の傾向やばらつきを確認し、平均値、中央値、最頻値といった代表値を踏まえて分析することが重要です。どのような視点で何を見たいのかによって、適切なグラフの種類を選定する必要があります。 データ不足はどう対策? 一方で、データが不足している場合は、必要なデータを自ら収集することが求められます。その際、どのようなデータがあればよいのかをあらかじめ仮説として立て、計画的にデータ収集を進めることが不可欠です。 グラフ説明はどう伝える? また、データ分析後には、結果を他人にわかりやすく伝えるためのグラフ化や説明方法についても十分に検討することが大切です。円グラフ、棒グラフ、ヒストグラムなど、見やすいグラフの具体例に着目し、どの視点からそのグラフが作られたのかを理解し、効果的な表現方法を真似ることで、説明力を高めていきたいと考えています。

データ・アナリティクス入門

4Pの視点で切り開く明日の戦略

なぜ4Pで仮説を立てるの? 4Pの視点から仮説を立てる方法について、これまで十分に実践できていなかったため、改めて基本に立ち返り内容を確認しながら取り組みました。その結果、4Pの視点が非常にやりやすいことを実感し、今後は意識的に活用していきたいと感じました。 なぜ多角的に見るの? また、コンサルティングの現場では、契約状況の因果関係を把握する際に4Pの視点で多角的に分析する必要性を改めて認識しました。リサーチャー時代から苦手としていたこの分野ですが、今後は意識して幅広い視野を持ちながら仮説を構築していきたいと思います。 どうして数値を読むの? さらに、数値データを分析する際は、単に事実を確認するだけでなく、背後にある事象を踏まえて仮説を立て、物事の判断につなげることが重要だと実感しました。3Cや4Pの視点を常に意識し、分析を通じた課題解決の思考力を養っていきたいです。

データ・アナリティクス入門

ロジックの先に見えた未来

MECEの意義は? 問題解決の過程でロジックツリーを活用する中、MECEの考え方が重要だと改めて実感しました。MECEとは、ある事象を「モレなくダブリなく」整理する手法ですが、その「モレなくダブリなく」を必ずしも厳密に適用するのではなく、切り口の感度を重視することが肝要だと感じました。 分類の工夫は? また、分類の際に「その他」を使う場合や、意味のある切り分け方のポイントについても再確認できました。こうした知見を基に、今後も状況に応じた最適なロジックツリーの構築に努めたいと思います。 ギャップ解消の策は? さらに、業務では常に計画とのギャップに注目し、数字や傾向を正確に掴む必要があります。現状の進め方が本当に正しいのか、ありたい姿に対して適切かどうかを再検証し、長期的な視野に立ってデータを分析しながら、ギャップ解消に向けたアクションにつなげていきたいと考えています。

データ・アナリティクス入門

目的と仮説で磨く分析力

比較対象は同条件? 分析においては、比較対象が本当に「apple to apple」になっているかを確認する重要性を学びました。各要素が同一条件下で比較されているかをしっかりと検証することで、正確な分析に結びつくと感じています。 目的と仮説は明確? また、ある事例をもとにしたグループディスカッションを通して、データ分析に入る前に「目的」や「仮説」を明確にすることの大切さを再認識しました。これらが十分に整えられていないと、分析のアウトプットに本来の意図が反映されず、効果が薄れてしまうことに気づきました。 外部環境の整理は? さらに、外部環境分析や企業分析に取り組む際は、まず自らの分析の目的を整理し、仮説をしっかりと組み立てるプロセスを徹底する必要があると感じています。この手順を着実に実行することで、分析の質が向上し、業務全体での活用がより一層進むと確信しております。
AIコーチング導線バナー

「確認 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right