データ・アナリティクス入門

どのデータを集めるかが未来を決める

比較の重要性を再考する 分析の本質は比較であることを学びました。これまで、比較対象の選定や要素の統一が不十分だったため、正確な分析ができていなかったと感じます。特に、生存者バイアスがかかってしまうことが多かったことを反省しています。 実証実験で得る結果は? 新規事業を創出する部門に所属しているため、秋から行う実証実験ではデータの適切な分析と比較対象の正確な選定を心掛け、意味のある結果を得たいと考えています。また、取得したいデータの設計も行い、目的に合った実証実験を行いたいと思います。 適切なデータ設計とは? 実証実験の目的を再確認し、成功と見なされるために必要な情報を考えます。どのようなデータを取得すればよいかを設計し、それを企画に反映させます。分析の本質は比較にあることを常に念頭に置き、適切な比較対象を設定することを意識して進めていきたいです。

クリティカルシンキング入門

分析の視点で新たな発見を振り返る

分析における多角的視点の必要性 データの分類や分析において、偏りのないように複数の切り口を考えることの重要性を感じました。そして、そこから生まれたインサイトが本当に正しいのか、網羅的に考えられているかを見極める必要もあると理解しました。これは実務でも同様で、仮説に基づいて行動する際、その仮説が正しいかどうか、考えに漏れがないかを確認することが非常に大切だと思います。自身の業務に限らず、さまざまな業界の分析を行う際にも、抜け漏れがないように、その都度確認する必要があると感じました。 データ再分類のアプローチは? また、異なるプロジェクトにおいても、共通点やどのように分類できるかを常に言語化するスキルを身につけたいと考えています。過去のアウトプットに関しても、新たな切り口でデータを再分類できないかを模索し、再検討とアップデートを続けていきたいと思っています。

データ・アナリティクス入門

業務に光る、学びのヒント

無意識の業務は何? 学習を進める中で、普段業務で無意識に行っているプロセスに正式な名称があることに気づかされました。例えば、説明時に「ロジックツリーが…」と話すと説得力が増すため、今後はこの知識をさらに活用していきたいと思います。 効果的な分析って何? また、上期の離職者分析では、残業時間のデータを検証し、残業時間と離職の因果関係がないことを確認しました。今回の課題の最後で何を分析すれば効果があるかを考えたように、実務においても常に効果的な分析手法を模索していく姿勢を持ちたいと考えています。今後も学びを業務に積極的に取り入れていく所存です。 課題を深めるには? 一方で、クラスの課題として取り組んだ分析内容については、詳細を具体化することができませんでした。今後、どのようにドリルダウンして効果的に具現化できるか、皆さんと議論できればと思います。

クリティカルシンキング入門

分解力で誤解を防ぎ、データ活用スキルを伸ばす

分解法は正しい? 分解することで原因の特定が容易になることを学びました。しかし、分解の過程では、常にその手法が正しいか自問することが重要です。そうしないと、分解したデータに誤った解釈をしてしまい、思い込みによる原因の特定につながる可能性があります。 売上の分析はどう? 売上を算出する際には、その目的を明確にしたうえで、効果的な視点からアプローチすることが大切です。これを意識せずに進めると、成果に結びつかないことがあると学びました。したがって、意識的に効果的な算出を心がけます。 報告の伝わり方は? また、売上算出にはデータ抽出の明確な目的を持ち、その目的に沿った効果的な切り分けを実施します。さらに、その算出結果を上司に確認してもらい、伝えたい内容が明確に伝わっているかを検証します。わかりにくい点があれば、その都度改善を行っていきます。

データ・アナリティクス入門

数字で解く最適ログイン戦略

視覚化はなぜ大事? 数字に集約し可視化することの重要性を改めて認識しました。代表値と分布に注目し、平均値や標準偏差の概念を意識することはもちろん、場合によっては単純平均ではなく適切な重みづけを行う必要があることも理解しました。 どうユーザー呼び込む? ログイン率向上のためには、プッシュ通知を活用したユーザー誘導施策が有効だと考えています。具体的には、アプリのログイン時間帯とユーザーの年代を比較し、どの時間帯にプッシュ通知を設定するのが適切かを検討していきたいと思います。 データは見えていますか? まずは、アナリティクスで必要なデータが可視化できているか、ログイン時間帯と紐づくユーザーの年代ごとのデータが抽出できるかを確認します。その上で、データの分散状況を把握し、最も効果が高いと思われる時間帯を優先して施策の検討を進める方針です。

データ・アナリティクス入門

妥協を捨てた学びの軌跡

現状の問題確認は? 問題を特定する際は、What、Where、Why、Howの観点から確認する重要性を改めて感じ、ABテストの存在も初めて認識しました。また、分析を進める中で「このくらいでいいや」という気持ちを捨て、徹底的に考え抜くことの大切さを実感しました。 企画実行はどう? 自ら企画を立案する際も、同じ観点で問題を明確にし、仮説を立て、データに基づいた検証を徹底することが必要だと考えます。そうすることで、企画の実行可能性が高まり、周囲からの賛同も得られると感じています。 学びをどう活かす? これまで学んだ内容を丁寧に振り返り、積極的な実践を心がけたいと思います。業務が繁忙になると学んだことをおろそかにしがちですが、本講義で得た知識を振り返り、日々の業務にどのように適用できるかを考える時間を常に確保していきたいです。

データ・アナリティクス入門

データ活用で見えた新たな気づき

平均値の選び方は重要? 平均値には様々な種類があり、その選択はデータに大きな影響を与えます。外れ値がある場合、平均値よりも中央値を採用することが重要であり、データのばらつきを数値で示すために標準偏差を使用することが効果的であることを学びました。 輸送会社ごとの加重平均とは? 私たちの事業所で使用する輸送会社の使用率を考慮し、加重平均を採用することで、待機料などの平均額をより正確に把握することができると考えました。 データの明確化を目指して 費用や作業時間を集計するアプリを使い、加重平均と標準偏差を計算することで、数値の差を明確化し、より精度の高い平均値の算出を目指しています。 実績データとの比較はどうする? これらの処理結果として得られた加重平均値を基に、毎月の実績データと比較し、データの妥当性と信頼性を確認する予定です。

データ・アナリティクス入門

数値に潜む、ばらつきの真実

平均とばらつきの真実は? 代表値とばらつきをデータ活用する際に考慮すべきポイントについて、理解が深まりました。データを読み解く際、まず平均値に頼りがちですが、大量のデータの場合、単純平均ではばらつきの影響が大きくなる可能性があるため、中央値や加重平均、標準偏差の重要性を再認識できました。また、目的に沿ったグラフの選び方についても、これまで十分に把握できていなかったため、ケースに応じた適切なグラフ選択の大切さを学びました。 地域差はどう捉える? 売上分析においては、前年比を合わせたり、特定企業の店舗別売上を確認して地域差を検討するなど、さまざまな視点でデータを活用できると感じました。特に地域差に関しては、ばらつきが出やすい要素であるため、標準偏差や代表値、ばらつきを意識しながらデータ作成や分析を進めていくことが重要だと思いました。

クリティカルシンキング入門

新しいデータ分析手法で業務効率化に成功!

データ加工の基本技術とは? データの加工の仕方、分け方の工夫、分解の注意点の3つを学びました。特に注意が必要だと感じたのは、分け方の工夫と分解の注意点です。手を動かしてそれらしいデータが見えた際にすぐに結論を出してしまうと、誤った判断に繋がる可能性があると感じました。 商談データ分析の新アプローチ? 私の業務では、特に商談や受注に関するデータの分析を担当しています。これまでとは異なる切り口でデータを集計し、同時に新しい仮説をもとにデータを分解してみることは、すぐに実践できそうです。 仮説を活用したデータの再確認 商談や受注データの吸い出しを行う際には、常に新しい仮説を持って取り組むことが重要です。そして、一見それらしいデータが見えても、一段階深く集計の漏れや新しい切り口、データの正確性を再確認することが必要です。

データ・アナリティクス入門

分析で見つけるビジネス成長の鍵

明確な分析目的を設定するには? 分析を行う目的を明確にし、必要なデータを適切に特定する重要性を再確認しました。指示する側とされる側の間で、作業前に前提条件にずれがないか確認する必要性も理解しました。このプロセスは、KPI設定や検証の際にも当てはまります。設定した目標が会社の方針と一致しているか、常に確認することが求められます。次回の対策を考えるためには、分析に必要なデータにズレがないかを検証し、そのデータが本当に有効かどうかを追求します。 ターゲットの再選定は必要? また、会社としてターゲットをどこに設定するかを再選定する必要があります。現在の顧客の業種別売上傾向やエリア別売上を詳細に分析し、各エリアの特性や注力すべき業種を見極めます。また、機会損失が発生している箇所を特定し、適切な対策を講じることが求められます。

データ・アナリティクス入門

平均だけじゃ見えないデータの真実

平均以外の指標は? 単純平均は外れ値の影響を受けやすいため、中央値やデータのばらつきを確認する重要性を理解しました。また、ヒストグラムや標準偏差についてはこれまで十分に活用できず苦手意識があったものの、演習を通じて具体的な活用イメージを持つことができました。加えて、加重平均や幾何平均が、データの重要度や変化率、成長率の評価に有効である点も理解できました。 分析方法はどう変わる? 課題分析においては、単に平均値から仮説を立てるだけでなく、データのばらつきも併せて確認するプロセスを取り入れるようにしています。さらに、セミナーの集客状況や参加者の満足度を評価する際、平均値に加えて中央値をしっかりとチェックするよう努めています。今後は、加重平均や幾何平均が活用できるシーンについても積極的に検討していく予定です。

マーケティング入門

現場で磨く!顧客視点の極意

体験で何が学べた? 自らが同じ環境に身を置くことで、真のニーズを引き出すという学びがありました。その経験から、自分が自然に心掛けていた考え方が正しいと再確認できた一方、ペインをゲインに変える視点が欠けていたことに気づかされました。 何に注力すべき? 顧客のニーズを把握するため、カスタマージャーニーを丁寧に実施し、これまで見落としていたペインポイントを洗い出すことの重要性を感じています。その上で、見つけたゲインポイントに基づいて、今後どの方向に力を注ぐべきかを提言していきたいと思います。 どのデータが鍵? また、マーケティングでは裏付けとなる指標やデータを収集し、分析を行うことが不可欠です。これらの情報をどのように効果的に収集しているのか、その方法と手法についてさらに学んでいきたいと考えています。

「確認 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right