データ・アナリティクス入門

データで解き明かす!仮説立案の極意

仮説の種類と意義を知る 仮説とは、ある論点に対する仮の答えのことを指します。仮説には目的に応じて「結論の仮説」と「問題解決の仮説」がありますが、その中でも仮説は様々なフレームワークを用いて複数用意する必要があります。検証方法としては、データ収集が重要であり、目的対象を検討した上でアンケート調査や口頭調査を行うことが有効です。 打ち手を選ぶ際のフレームワーク活用法は? 業務に活用できる場面としては、打ち手の検討があります。問題解決のためにどの打ち手が効果的かを考える際には、フレームワークを用いてどこに効果があるかを検討することが求められます。ブレインストーミングから打ち手を選定する際にも、枠組みから検討し、その打ち手の効果測定や仮説作りのためのデータ収集が必要です。 フレームワークで複数視点を持つには? 複数の仮説を持ちながら物事を検討することは重要です。フレームワークを活用することで、様々な視点から会議に参加する準備が整います。そのためには、フレームワークの知識を習得し、何が論点になっているのかを正確に確認することが必要です。 データ検証の質を高める手法 データ検証の項目を洗い出す際には、目的が曖昧なままアンケート調査を行うのではなく、目的を明確に定め、それに沿った項目や枠組みを検討しながら実施することで、質の高い結果が得られます。

データ・アナリティクス入門

ナノ単科で開く知の扉

ライブ授業の意義は? ライブ授業では、これまで学んできた内容を復習しながら、分析のプロセスを再確認することができ、知識がよりしっかりと定着したと実感しました。 演習で何を再確認? 演習では、ストーリーを持って分析を進める方法や、仮説に対する検証方法、そして平均値だけでなくそのばらつきに着目する必要性について再確認できました。 グループの発見は? また、グループワークでは、他の受講生の多様な視点を通じて新たな気づきを得るとともに、自分自身の考えをさらに深めることができました。 学びを言葉にできますか? 改めて、学んだことを言語化し、自分事として捉えることが知識の定着に大変重要であると感じました。 経営分析の心得は? 会社の経営状況を分析する際は、自分なりの仮説を立て、ストーリーを意識しながら課題解決のステップを踏むことが必要だと再認識しました。 データ活用の極意は? また、データの活用においては、まずは既存のデータを基本とし、情報が不足する場合には自らデータを集めることを心がけ、アウトプットのイメージを持つことが大切だと学びました。 知識定着の秘訣は? 短期間で学んだ知識はすぐに忘れてしまいがちです。業務で実際に活用し、継続的にアウトプットするほか、書籍などでの学習を続けることで知識の定着を図りたいと思います。

データ・アナリティクス入門

挑戦と発見のデータ学習録

対象比較の意義は? 分析の真髄は、対象がある場合とない場合の値を比較する点にあります。たとえば、ある評価は対象が存在するときの値と存在しないときの値の差で示されます。さらに、評価する対象の選び方も非常に重要であり、ライブ授業で学んだように、対象を選ぶ際には「アップル・トゥ・アップル」の比較や生存者バイアスに注意する必要があります。今後はこれらの点を常に意識して取り組んでいきます。 反ユダヤ対策の現状は? これまで、反ユダヤ主義をなくす取り組みは、行動前のアメリカにおける宗教犯罪における割合(ユダヤ教に対して69%)や、国民の反ユダヤ主義に対する無関心の割合(58%)に着目して行われてきました。今回、ある協力組織と連携した取り組みの成果は、次回のデータ分析においてユダヤ教に対する犯罪の割合と国民の無関心の割合を確認することで判明するでしょう。これらの結果を踏まえ、取り組みの内容を適宜見直すことになります。 実務で学んだことは? 私たちの学びは、データの収集・加工を自ら行い、現状把握や課題の特定、そして解決策の提示を目指すものです。しかし、実務では主に協力先のデータ分析結果を利用して業務を進めています。もちろん、この講座ではさまざまな試行錯誤を行っていますが、業務に関連する際はこれまでの手法に頼ることが多かったのです。以上でよろしいでしょうか。

データ・アナリティクス入門

データに賭けた挑戦と発見

目標設定はどう? 「分析は比較なり」「何を明らかにしたいのか」という考えを軸に、データから得られる情報を見失わないため、まず明確な目標を設定しています。その目標に向かい、必要なデータやストーリーともいえる仮説を構築し、試行と検証を繰り返すことで、求める結果に近づけています。 データ表現はどう? また、取り扱うデータの種類に応じた加工方法やグラフの見せ方が重要であると感じています。そのため、状況に合わせて最適な表現方法を選ぶことに努め、いかなる場合も「とりあえず」での加工を避け、ビジネスにおける分析では、データに入る前に「目的」や「仮説」がしっかり整っていることを確認しています。 ランニング費用はどう? これまで部門費管理を想定していた中で、担当しているITツールのランニングコストについても、使用金額や実際の作業時間など、これまで取得してこなかった新たなデータ要素を活用していく計画です。これにより、必要なツールや今後の投資対象となるソフトウエアの分析に役立てようとしています。 データ収集の工夫はどう? さらに、データが不足している点を解消するため、まずは必要なデータの収集に力を入れると同時に、作業の効率化や一部自動化の導入も視野に入れています。今回の講座を通じて、時間の有限性を改めて認識し、これからはより計画的に活動していく所存です。

デザイン思考入門

実践体感で学ぶイノベーション

プレゼンは納得できる? プロトタイプの説明については、完成されたプレゼンシートにて発表する方が納得感が得られると感じました。そのため、プロトタイプ作成や報告の優先事項は、スピード、実際に体感・体験できること、そして低コストであると考え、報告もこれらを重視しています。 体感をどう見直す? また、これらの優先事項を活かすためには、人間が直接体感・体験した感想を重要な情報として捉え、AIを活用して視覚化する方法が有効であると学びました。 データ収集の極意は? 業務におけるプロトタイプやテストは、図面やCGでの可視化に加え、実際に試作された空間として創出されています。これらに対して、顧客の反応を定性的なデータのみならず定量的なデータとしても捉え、比較できるようにすることが求められます。そのため、どのようなデータを収集し、何を提示するか、また提示することでどのような課題解決やニーズの充足につながるかを事前に検討する必要があります。 クライアントの声は? さらに、コミュニケーションの活性化を求めるクライアントに対しては、彼らが何を求めているのかを十分に確認しながら試作アイデアを実際の空間に反映させ、図面化します。そして、アンケートによる定性調査と、図面や空間に対するドット投票による定量調査の両軸で評価を行う取り組みが重要だと考えています。

データ・アナリティクス入門

複数仮説で切り開く学びの道

仮説はどう組み立てる? 仮説を考える際、3Cや4Pなどのフレームワークを活用することで、複数の仮説を網羅的に立てる手法に改めて気づかされました。これまでマーケティングのツールとしてしか意識していなかった考え方も、整理のための有効な手段となることを実感しました。 日常業務で仮説考察は? また、日々の業務の中で仮説を考え続けることにより、自分自身の業務への向き合い方を変えていきたいと考えています。 新サービスの評価はどう? 新サービスの提供時には、仮説を一つだけ立てた結果、分析や報告の内容が浅くなってしまい、納得感に欠ける部分があったと感じました。頭の中にはもっと考慮すべき点があったにもかかわらず、十分に明文化できなかったため、結果として不十分なものになってしまいました。 再挑戦の決意は? この現状を踏まえて、改めて複数の仮説を考え直し、分析と報告を再度やり直す方向で進めていこうと考えています。 案件分析の進め方は? 現在、2件の案件で分析が必要とされています。1件目は、半年前に提供したサービスの展開状況と今後の展開について、2件目は1年前に想定したサービス利用状況を再度確認する業務です。各案件とも、現状のデータを収集し、フレームワークを用いて仮説を立て、過去の想定と現状との違いを明確にする形で分析を実施する予定です。

クリティカルシンキング入門

伝えたい順で魅せるスライド術

伝える順序は大切? 学びの中で、まず伝える順序に着目することの重要性を再認識しました。スライド作成時に、まず何を伝えたいのか、またその根拠としてどのグラフやデータが必要かを意識することで、受け手にとって分かりやすい資料が作れると感じました。さらに、資料全体の色調、書体、イラストなど、視覚的な要素にも工夫を凝らすことで、相手にどう捉えてもらうかを考える機会になりました。 実務での活用はどう? また、学んだ内容は実際の業務にも直結しています。社内の戦略会議や中間報告、トラッキング結果の共有など、社内向けのプレゼン資料作成で活用できることが実感できました。顧客への説明資料においては、製品の伝えたいメッセージや、説得力のあるエビデンスの見せ方に役立っています。 資料見直しの効果は? さらに、カタログや各種資材の作成においては、我々が何を伝えたいのか、そのためにどの情報をどのように見せるかを工夫する上で、大変参考になりました。作成した資料は翌朝に再度見直すことで、伝えたい内容が改めて明確になり、スライド全体を俯瞰して強調すべきポイントやグラフの見やすさを確認する習慣が、資料の質をさらに向上させています。上司や同僚の意見を取り入れることや、資料作成後にロープレで流れや根拠を整然と説明できるか確認するプロセスも、非常に有益な学びとなりました。

データ・アナリティクス入門

小さな実験、大きな変革

A/Bテストの意義は? 今週は、A/Bテストの重要性とその実施ポイントについて学びました。効果検証においては、目的と仮説が非常に大切であり、1要素ずつ同条件で比較することで、検証の精度が上がると実感しました。この考え方は、今後の業務改善にも大いに役立つと思います。 現場での工夫は? 学んだ内容は、現場での作業効率向上や安全対策の見直しに応用できると感じました。たとえば、同じ作業を複数の方法で実施し、作業時間や事故発生の状況を比較することで、どの方法がより効果的か客観的に判断できます。また、新しい手順やツールを導入する際には、いきなり全体に適用するのではなく、まず小規模でテストし、得られたデータをもとに判断することで、リスクを抑えた改善が可能となります。こうした手法は、現場改善の精度を高め、納得感を持たせるためにも有用です。 改善策はどのように? まずは、改善したい作業手順を一つ選び、従来の方法と新たに提案する方法の両方を明確に定義します。その上で、両手法を同条件・同期間で実施できるよう現場を調整し、作業時間や安全面、作業者の負担などのデータを記録・比較します。実施前には「どちらの方法がより効率的か」という仮説を立て、検証の目的を関係者と十分に共有してからテストを行い、効果が確認された場合は現場全体への展開を検討する方針です。

クリティカルシンキング入門

伝わる工夫で魅せる資料術

資料の視覚化は? 伝えたい内容は、単なる言葉だけでなく、視覚的に表現することでより効果的に伝わることを実感しました。テキストや色の使い方、資料上での順序、グラフの種類、そしてメッセージとグラフとの関連性など、工夫する要素が多々あります。これらは、単に思いつきで作成するのではなく、受け手を意識して選び抜く必要があると感じました。さらに、資料を作る際は、どの場面で誰に見せるのか、作成の目的を明確にすることが大切です。 部内外の説明は? 自分が所属する部署では、部内外に業務プロセスの改善や新規プロジェクトの導入を説明するとき、過去のデータと現状の推移を図示するなどして、なぜその取り組みが必要なのかを明確に伝えています。こうした手法は、今回学んだ内容を活かすのに非常に役立っています。また、部下の資料チェックを行う際も、相手に伝わりやすい工夫がされているか、ポイントが正確に押さえられているかを意識するように心がけています。 今後の資料作りは? 今後は、資料作成や確認の際、今回の学びがしっかりと反映され、受け手に必要な情報が探さずとも見つかるような工夫がなされているかを常にチェックする習慣を続けたいと思います。また、表やグラフの種類ごとにその効果を最大限に発揮する使い方をさらに学び、より具体的で理解しやすい資料作りに挑戦していきます。

クリティカルシンキング入門

イシュー発見で未来を拓く学び

イシューはどう見抜く? 課題解決を進めるためには、まずイシューを特定することが重要です。これは、課題に対して最適かつ迅速な解決策を導くための基本であり、どの取り組みが最も効果的に課題を解決できるかを明確にするためです。具体的には、データを分解してイシューの特定を容易にし、内部環境と外部環境を分析することで、課題の本質を正確に把握する必要があります。さらに、イシューを問いの形にし、具体的かつ一貫して検討する点にも留意することが大切です。 IT戦略はどう考える? 学んだ手法とその解決方法を、自社業務と顧客先業務の双方に活かすことができると感じています。自社業務では、IT戦略を考える上で、どの領域に投資するかを提案することを目的とします。まず、自社の売上データを分解し、内部・外部環境を分析することで、ビジネスインパクトの大きい領域を特定します。その上で、従来のIT導入を促す戦略ではなく、顧客企業の利益向上を目的とした戦略を検討するための問いを立てたいと考えています。 業務効率改善はどう進む? 一方、顧客先業務においては、業務効率化を提案することが目的です。具体的には、システム検証業務において最も時間がかかる工程を確認し、どのタスクを削減できるかという問いを設定することで、より効率的な業務改善に繋げることができると考えます。

クリティカルシンキング入門

データの切り口に迷ったら実践する方法

データ分析の切り口選びで何が見える? データの分け方によっては、見えてくる結果が異なることがあります。例えば、分解する切り口を誤ると、真の原因が発見できなくなることがあります。このとき、分解する切り口は「層別分解」「変数分解」「プロセス分解」の3つが有用です。これらの手法に慣れることが重要なので、自分で考えながら手を動かすことが大切です。 真の原因を探る鍵はどこに? 問題解決において真の原因を探る際には、データ分析を行いますが、その際には分解の切り口が誤っていないかどうかを確認する必要があります。また、お客様へのヒアリングの中でMECEおよび5W1Hを意識することで、真の原因や現状を把握する際に役立ちます。 問題解決にMECEはどう活用する? 問題の特定と分析において、問題を構成する要素を重複なく漏れなく分解することで全体像を把握しやすくなり、また問題の原因を特定する際に全ての可能性を考慮して整理することができます。業務プロセスの改善では、業務フローをMECEに分解することで効率化の余地を明確にします。データ分析とレポーティングでも、データをMECEに整理することで分析の精度を高め、クライアントにわかりやすく伝えることができます。加えて、プロジェクト管理ではプロジェクトのタスクをMECEに分解し、抜け漏れなく管理します。

データ・アナリティクス入門

分布も味方に!データ分析の学び

平均値と分布への疑問は? 代表値を用いた分析手法が有効であると実感しました。たとえば、平均値(単純平均)を用いることで全体像を把握できる一方、データがどの程度集約されているのか、またはばらついているのかを判断することは難しいため、平均値とデータ分布の両面から検証する重要性を学びました。 データ分布の検証は? データ分布を確認する手法としては、標準偏差が挙げられます。標準偏差の値と集計結果に大差がなければ、分析の正確性が高まると感じました。また、分析内容に応じて単純平均、加重平均、幾何平均、中央値など様々な代表値を使い分けることで、異なる角度からの洞察が可能になることに気づきました。 仮説検証の進め方は? さらに、データ分析は比較を前提としているため、問いやゴールを明確に定め、仮説の設定、データ収集、仮説検証というプロセスを徹底することが大切だと学びました。これを繰り返すことで、より精度の高い結論に到達できると実感しました。 実践例の応用は? また、実践例として、交通系ICカードの決済実績を分析する際には、切り口別に代表値や分布の状況を組み合わせる手法に取り組みたいと感じました。ヒストグラムなどを用いてビジュアル化することで、報告相手にわかりやすく情報を伝える工夫が、今後の分析の質向上につながると考えています。
AIコーチング導線バナー

「確認 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right