データ・アナリティクス入門

数字に秘めた改善の真実

平均と中央値はどう違う? 平均は全体の傾向を示す便利な指標ですが、外れ値の影響を受けやすいため、必ずしもデータの中心を正確に表しているわけではないと再認識しました。一方、中央値はデータを並べたときの中央の値であり、外れ値の影響が少ないため、偏りのあるデータに対して有効だと感じています。また、標準偏差を活用することで、同じ平均値でもデータのばらつきに違いがあることを明確に把握できる点が印象に残りました。 営業改善、ポイントは? 営業店の業務改善においても、代表値を活用する意義を学びました。具体的には、各店舗の業務処理時間を平均と中央値で比較し、処理時間が極端に長い業務がないかを確認することで、改善策の提案につなげる方法が効果的です。さらに、各営業店ごとの業務プロセスのばらつきを標準偏差で表現し、オペレーションの違いを把握する取り組みが有用であると考えています。 業務負荷の見極めは? また、ヒストグラムなどを用いて業務負荷の高い部分を特定し、改善の優先順位を決める手法にも触れ、業務効率化の進捗をグラフでフィードバックすることで、改善効果を視覚的に伝える方法の重要性も実感しました。

クリティカルシンキング入門

データ分析で気づく新たな切り口の魅力

データ分析の新しい切り口は? データ分析において、単に数字を見るだけでなく、その切り口や追加する要素によって新たに得られる情報が異なることを学びました。データを視覚化することで、適切な切り口を見つける手助けにもなります。そのため、まずは異なる切り口でデータを分けてみることから始めていきたいと思います。 売り上げパターンはどう探る? 例えば、商品の売り上げを分析する場合には、既存顧客や新規顧客のどの層で売り上げが伸びているのか、また、新色と既存色のどちらが売り上げに寄与しているのかを確認する必要があります。 新商品の需要をどう予測する? また、新商品の市場性やニーズについても、どの年代や年齢層に需要があるかを分析することが大切です。このためにアンケートを実施し、そのデータを元に市場性を確認していきます。 昨年の売り上げデータの活用法は? 昨年発売した商品の売り上げについては、月ごとに分析を行っているため、データの分け方をさらに細かく見直し、実践に活かしたいです。新商品だけでなく、既存商品や周辺商品も含めて、相関性を確認することで、より深い洞察が得られると考えています。

クリティカルシンキング入門

問題の本質を捉える力を磨こう

本質はどう見える? 課題解決において、目の前の問題に直接取り組むのではなく、本質をとらえてイシューを明確にすることの重要性を感じました。これを実現するためには、物事を多角的に分析する必要があります。また、WEEK1からの学びをすべて振り返ることが今回の学びにつながると感じたため、再度復習をしようと考えました。 処方データの示唆? 医師への処方拡大を検討する際には、処方データや医師の治療方針などから課題を特定します。薬剤の処方データを扱う際には、複数の観点からデータを分解し、適切なグラフで傾向を示します。その後、イシューを特定し、実施すべき施策を決定します。 対象エリアは? 講演会を企画する場合には、対象エリアのデータを再確認して、取り組むべき内容について検討します。企画書を作成する際には、この情報をもとに具体的な内容を決定します。 計画の根拠は? 上長への活動計画の報告においては、担当施設の現状をデータにより明確化し、ボトルネックを明らかにした上で、なぜその計画に至ったのかを説明します。こうしたアプローチを取ることで、本質的な課題解決を進めることができます。

データ・アナリティクス入門

データ分析で広がる新しい可能性

仮説とグラフ、どう選ぶ? ライブ授業での演習を通じて、仮説を立てることや知りたいことを明確化する手法を学びました。これは、何と何を比較するデータを集めるべきか、そしてどのグラフを用いて視覚化するかを具体的に知ることに役立ちました。それぞれのグラフには特性があり、自分が伝えたいことに適したグラフを選択できるようになったと感じています。 試験結果はどう活かす? 勤務校では、各時期に行われる実力テストの結果をもとにヒストグラムを作成し、成績の分布を視覚化したいと考えています。これにより、各得点帯の生徒数の変化を確認し、生徒の学習がどの程度定着しているかを把握することができます。また、入学後に行ったアンケート結果を分析し、入学の決め手になった要因をデータやグラフでまとめ、今後の募集活動や広報活動に活かしたいと思っています。 クラス分析をどう実施? まずは、自分の担当クラスを対象に分析を行い、具体的なデータの種類や収集方法、仮説に基づくグラフ作成など、提案方法を試行錯誤してみます。そして、その結果を関係部署に提案し、学校全体の分析へとつなげていきたいと考えています。

クリティカルシンキング入門

経営課題解決の鍵:イシュー設定と軌道修正の実践

クリティカルシンキングの再認識 今回の事例は、結果を知っているからこそイシューを絞り込むことができたと言えます。しかし、未来が見通せない中ではイシュー設定や課題抽出、意思決定力が一層難しくなります。この点で、クリティカルシンキングを再度学ぶ価値を実感しました。 イシュー設定の難しさをどう克服する? イシュー設定自体も難しいですが、仮にイシューを設定して思考を進める過程でズレが生じた場合は、軌道修正が必要であることに気づきました。私は、この事例を通じて得た学びを、自社の経営課題である「5年以内に収益性を2倍にする」という目標に当てはめることができると思いました。特に、問題課題に対する審議を進めていく中で、イシューからのズレが発生し、迷子になる場面で役立つと感じました。 イシューツリーで見える新たな視点 自社の経営課題をイシュー化し、イシューツリーを作成する過程では、これまで見落としていた視点や、分析が不十分なデータを発見することができます。また、問題解決の場面では必ずイシューを明文化し、審議するメンバーがいつでも確認できるようにしておくことが重要です。

データ・アナリティクス入門

数字で読み解く成長ストーリー

代表値で分かる? データの状況を評価するためには、単純平均、加重平均、幾何平均といった代表値や中央値が用いられます。平均値は計算が簡単で直感的に理解しやすい一方、極端な値(外れ値)の影響を受けやすいという面があります。そのため、データのばらつきを示す標準偏差と併せて確認することが重要です。 小規模店舗見えてる? 複数の店舗の売上やイベントの各店舗での来場者数などを平均値だけで評価すると、店舗ごとの規模や条件の違いから、小規模な店舗や一時的な変化を見落とす可能性があります。こうした場合、標準偏差や中央値などの指標を追加することで、より詳細な状況把握が可能となります。 分析体制整える? レポート作成においては、平均に加え中央値、最頻値、標準偏差など複数の代表値やばらつきの指標を数値化することで、微細な変化に気づきやすい分析体制を整えることが求められます。さらに、ヒストグラムや折れ線グラフ、棒グラフなどを用いて直感的に理解できる分析を行い、Lookerstudioやスプレッドシートでテンプレートをあらかじめ用意しておくと、作業の効率化にも寄与します。

クリティカルシンキング入門

予算作成を成功させるMECE分析のコツ

分析と成功の考え方は? 「分かる」は「分ける」と同じ意味だということが重要です。分析の結果、顕著な傾向が見られない場合でも、それは失敗ではなく、むしろ傾向がないことが確認できた成功です。特に、MECE(漏れなくダブりなく)を意識し、分析の切り口を明確にすることが大切です。 来期に向けた予算分析法 来期の予算作成に向けては、今期のデータをMECEを活用して分析する予定です。具体的には、四半期ごとの傾向、各勘定項目ごとの傾向、各支店ごと、固定費用と変動費用、そして担当者ごとに分けて分析します。また、予算作成の時期を待たず、今から準備を進めることも可能だと感じました。 代替案とスムーズな承認 現状を追う目線とは異なる視点でデータを見て、必要なことを考えます。どのような資料を作成すれば予算承認が通りやすく、承認者が納得しやすいかを考慮します。さらに、他の国や会社全体の状況を把握し、予算取得のために想定される壁があるかどうかを調査し、事前対策やプランBを考えておきます。承認後のフローも整理し、次のアクションにスムーズにつなげられるよう準備を進めます。

クリティカルシンキング入門

データ活用で見えた新たな視点と工夫

データ加工法をどう活用する? データの加工法について学びました。与えられたデータをそのまま使うのではなく、自分で項目を追加することを意識することが重要です。例えば、絶対値や相対値(比率)を追加することで、データにひと手間加えることができます。数字をグラフにすることも非常に効果的です。また、データを分解する際には、複数の切り口で考えることで異なる見解が得られることがあります。 人件費分析で何を検証する? 現在、人件費分析を行っているため、今回学んだ切り口や加工法を実践しています。具体的には、時間外労働時間の妥当性を検証するために、データを性別、既婚未婚、年齢(若手かベテランか)、部門ごとに切り分けて情報を抽出し、グラフで可視化します。 PowerBIでどう可視化する? 人事データを入手したら、比率や不足している情報を追加し、勤怠情報としての表を作成します。このデータを可視化するためにPowerBIを使用し、グラフ化します。さらに、散布図を用いて時間外労働時間と相関のある事柄を確認し、そのデータを参考に実際に関連性があるかどうかを調査します。

クリティカルシンキング入門

自身のクセを知る:客観視の挑戦

考えのクセ、気付いてる? 自分には考え方のクセがあることを改めて実感しました。具体的には、客観的な視点よりも主観的な考え方に偏ったり、データや数値よりも自分の経験を優先して考えてしまうことに気づくことができました。このクセを直すためには、まず自分自身で常に意識することが大切ですが、それだけでなく、人とのディスカッションの機会を多く作って練習していくことが必要だと感じています。 アンケートはどう読む? 特に顧客アンケートの分析時には、考え方のクセが出てしまわないか注意が必要です。アンケートの自由記述欄では感情移入しやすく、主観的な判断に陥ることがありますが、そうならないように感情に流されず、アンケートから客観的なインサイトを得られるよう分析したいと考えています。 意見交換は必要? まずは自分で現在の課題を意識しながらアンケートを分析します。その後、他人に分析結果を説明して、論理に飛躍がないか、見落としていることがないか確認してもらう機会を設けたいと思います。今後は、多くの人と意見交換を行い、視点の幅を広げることを意識していきたいです。

データ・アナリティクス入門

平均再発見!生データが語る学び

平均って何だろう? 基本的な代表値である平均とばらつきを再確認しました。また、関連するフレームワークの動画を通じて、単純平均、加重平均、そして幾何平均といった具体的な計算方法が存在することを学び、以前は知っていた幾何平均についても、計算方法や名称を含めて改めて理解することができました。 中央値はなぜ大切? 技術職として、日常的に平均値や標準偏差を用いたばらつきの分析を行っています。中央値については、その定義や目的を理解しているものの、実際の業務では頻繁に使用することはありません。しかし、中央値が持つ目的を意識し、グラフや図を用いて全体の分布や外れ値の有無を確認することで、解析の正確性を担保していると感じています。 外れ値の確認方法は? また、普段からデータに触れる中で、改めて図での表示を行い、データの前処理における外れ値の存在を意識することの重要性を再認識しました。どの業務においても、正しい目的意識を持つことが根幹であると実感しており、今回学んだ単純平均、加重平均、幾何平均を活用して、目的に即した正確な解析を進めていきたいと考えています。

データ・アナリティクス入門

実践で磨く仮説思考の秘訣

正しい仮説はどう作る? 仮説を正しく構築することで、検証マインドが高まり、ビジネスの精度向上につながります。そのため、適切な仮説を立てるスキルの習得が求められます。また、「what」「where」「why」「how」といった視点を意識することで、課題の把握や解決方法の糸口を見つけることが可能です。 販売分析の秘訣は? 日々の販売分析においても、仮説思考を取り入れるよう努めています。現場担当者が実務の中で肌感覚で感じている課題について、定量的・定性的な両面から評価し、チームとして合意のもとで進めることが重要です。 仮説は独立すべきか? また、仮説は一つに絞らず、対策や重要性、影響力を十分に考慮した上で、業務への反映が必要です。複数の可能性を見極めながら、最適な対策を検討していく姿勢が大切です。 改善プロセスは? 具体的なプロセスとしては、まず現場担当者が感じている課題を確認し、併せて実績数値などのデータを基に問題点を洗い出します。その上で、いくつかの仮説を立て、裏付けとなるデータや対策案を検討しながらプロセスの改善を進めています。

データ・アナリティクス入門

小さな疑問から大きな発見へ

何故課題意識は必要? 分析の目的や課題意識を明確にすることで、日常の業務だけでなく、普段目にする分析データについても「なぜ?」と考える習慣が身につきました。例えば、ニュース記事で医師不足が取り上げられる場合、その背後にある分析の意図や解決すべき課題を自分なりに考察するきっかけとなりました。 施策評価はどう? また、業務で複数の施策を企画・実行する中で、効果を評価するための分析が重要だと感じています。中長期的な戦略の実行に際し、連続性のある施策を実施するためにも、小さな施策のブラッシュアップを繰り返す必要があると考えています。たとえば、アプリへのログインプロセスを細かく分解し、特に初回ログイン率の向上に向けた分析を進めています。 情報取得は万全? さらに、戦略立案の段階から必要な情報やデータが適切に取得できているかを精査し、取得できていないデータにはタグ付けなどの対応を実施して、常に分析が可能な状態を作り上げています。同じ条件で定期的にログの確認やレポート作成を行う仕組みを整備することで、継続的な定点観測が可能になりました。

「確認 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right