クリティカルシンキング入門

グラフとメッセージ、一致させる極意

グラフとメッセージは合致? グラフと見せ方の工夫として、メッセージとの整合性が重要であることが印象に残りました。これまで、既に作成されたグラフをそのまま資料に使用していましたが、本当にメッセージと一致していたかはあまり考えたことがありませんでした。今後は、メッセージと図、グラフの相関性を考慮し、適切なものを選択していきたいと思っています。 フォントの印象はどう? 見せ方の工夫では、フォントや色によって与える印象という点も考えさせられました。これまでは、多くの装飾や色を使っていたため、読み手を意識しつつ、最小限でわかりやすく示すことを心がけたいです。 アイキャッチは効果的? また、読んでもらうための工夫として、アイキャッチや文章の硬軟、体裁が挙げられていました。その中でも、アイキャッチに関しては、人によって受け取られ方が異なるため、一般的にどんな内容ならイメージしやすいかに悩みました。 学んだ知識を活かす? 今回学んだ内容は、以下の自分の業務に活かせると考えました。物性比較やネガティブキャンペーンなどの比較データには、最適なグラフや表を適用し、分かりやすくまとめる方法が使えると思いました。また、社内外の報告用資料やメール、議事録においては、読んでもらう工夫としてアイキャッチを置くことや、体裁を整えて読みやすくすることに役立てたいです。読み手を意識し、内容作成を心がけていきます。 報告書の工夫は? メールや報告書を書く際は、単に文章を書くのではなく、タイトルの工夫や体裁を整えることで、読み手が理解しやすくなるように構成します。パワーポイント資料作成においては、キーメッセージと内容が一致しているか、第三者に確認してもらいます。過剰な強調を避けるためにも、資料作成後に内容を見直します。グラフ作成においても、示したいメッセージとグラフが一致しているかを意識したいと思います。

データ・アナリティクス入門

データ分析で得た学びの再発見

データ分析の基本を理解する 目的を明確にすること、要素を整理すること、そして比較することがデータ分析の基本だと学びました。特に、分析は比較であるという点が印象に残っています。しかし最も重要なのは、データ分析が「何のため」に行われるのか、その目的を明確にすることだと改めて感じました。ケーススタディではデータ分析が上手くいかなかった例もあり、要因に期間や項目の一般的な回答だけでなく、上司と部下のコミュニケーションについても意見が挙げられていました。そのため、基本に立ち返る必要性を再確認しました。 具体的な要素整理のポイントは? 具体的な要素の整理を心掛けました。例題で行ったPC購入に関するディスカッションでは、メーカー、金額、スペック、OSなど具体化することで、共通認識が得られやすいと感じました。また、分析の際には定量データ同士、定性データ同士を比較することの重要性も理解しました。平均値についての説明は分かりづらい部分もありましたが、先生が示してくれたビジュアルを通じて少しずつ理解が進みました。 退職分析における「目的」の重要性 私は人事部でDX担当をしており、退職分析を行っています。職種、年齢、勤続年数といった要素を洗い出し、比較をしていますが、「目的」を見失いがちです。退職率を下げるだけでなく、「若手の」離職率、「技能職の」離職率といった具体的な目的を持ち、分析を続けていきたいと思いました。また、グラフを作成して終わるのではなく、伝えたい「メッセージ」をしっかり伝えるための改善も進めたいです。 データ分析で立ち止まる瞬間 データ分析を実践することは重要ですが、一度立ち止まって「目的」を考えること、また定期的にその目的に立ち返り確認することも必要だと感じました。私自身、考えすぎる傾向があるため、要素の整理においては柔軟な思考を持つように心がけていきたいです。

マーケティング入門

顧客の心を動かす名づけ戦略

なぜ講義は印象深い? 「どう魅せるか?」の講義で最も印象に残ったのは、「商品が顧客のイメージと合っていないと売れない」という点です。たとえば、カップタイプのカレーライスは売れないのに、別の表現に変えることで商品の魅力が伝わり、売れるようになるという事例は、新鮮な学びでした。また、新しい商品が普及するための5条件について考える機会も得られ、とても有意義でした。 ウォークマンの魅力は? 具体例として、ウォークマンについて5条件に当てはめて検証した点が印象的です。まず、従来は家でしか楽しめなかった音楽を持ち歩けるという比較優位が挙げられます。次に、カセットテープという従来の形式を踏襲しており、適合性の面でも障壁が低くなっています。また、使い勝手の良さがわかりやすさにつながり、試用可能性においては既存のイヤホンやカセットテープを利用できたことが有利に働きました。さらに、新しいアイデアが取り入れられていることが一目でわかる可視性も評価でき、ウォークマンは5条件すべてに当てはまることが確認されました。 なぜ名前がわかりにくい? また、自分の商品開発では、まずターゲット市場を絞ることから始めています。これにより自然とセグメンテーションやターゲティングが行われるのですが、よく見受けられるのは、名称が「わかりにくい製品名」になってしまう点です。正確に表現しようとするあまり、長くなったり、差別化ばかりを強調してしまうことが原因です。 どう商品名を選ぶ? 「どう魅せるか?」では、商品名の重要性も強調されています。顧客の視点に立ち、最もイメージと合致する名称が何かを見極めることが求められます。たとえば、展示会の名称を決める際には、顧客が直感的に理解できるかどうかをチェックし、新規事業を生み出す際には、あらかじめイノベーション普及の5条件に照らして検証することが大切だと感じました。

戦略思考入門

有限資源が生む無限の可能性

どんな学びがあった? week1からweek5までの学びを振り返り、有限な資源を効果的に活用するためには、まず情報を収集・整理し、自分の判断軸に基づいて本質を見極めた上で優先順位をつけることが有効だと理解しました。今回の学びは、仕事以外にも応用できる点が特に印象に残りました。これまで分けて考えていた部分が、ライブ授業を通してプライベートの目標や趣味にも活かせることに気づき、限られた時間内で計画を立て、実行に落とし込めると感じました。 情報整理はうまくいっている? 日頃から情報収集や整理を行う際には、有限なリソースを意識し、時間をかけすぎないようアンテナを張っておくことが大切です。また、専門の取引先に情報提供を依頼するなど、工数管理を徹底する姿勢も必要だと考えています。 新制度の判断はどうする? 自社では捨てる・辞めるという行為について比較的寛容な面があるため、新しい制度を導入する際には試験導入を行い、実際に期待する効果が得られるかどうかを慎重に判断することが望まれます。判断軸としては、会社の方向性をしっかり把握し、経験則に頼りすぎないことが重要です。不明な点があれば相手と対話し、真意を確認するように努めたいと思います。 ニュースや情報はどう活かす? また、日常的にニュースや他社情報にアンテナを張るとともに、他社の財務諸表の分析を行うことで、内容によっては定点観測し派生する影響も把握できると感じました。さらに、専門知識を持つ取引先との接点を日頃から持つことも、情報の更新に役立つと考えています。 チームの連携はどう取る? 実行後には、捨てる・辞めるという判断もあらかじめ決めておくことで、スピード感を持って取り組むことができると実感しました。さらに、業務開始時にチームメンバーと判断軸を共有し、認識を統一することが円滑な業務遂行に繋がると感じています。

データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

データ・アナリティクス入門

問題の原因をデータ分析で解明!

問題の原因をどう探る? 問題の原因を探るためには、データを確認しながら原因を突き止めることが重要です。問題の原因を明らかにするために、プロセスを分散して問題箇所を絞り込み、原因の仮説を立てるのが効果的です。問題がある場合、その結果には必ずその流れがあり、その流れを押さえることで、プロセスのどの段階に問題があるのかを特定できます。 解決策の検討はどう進める? 解決策を検討する際は、複数の選択肢を洗い出し、根拠を持って絞り込むことが求められます。ステップを踏んでデータを分析し、問題解決の精度を高めることと、仮説を試しながらデータを収集し、より良い問題解決に繋げることは、両者のアプローチを組み合わせることが効果的です。まず手始めに身の回りのデータを分析すること、分析の練習を積み重ねること、そしてどんな分析計画を立てるかシミュレーションし、どんな情報を誰から収集するのか、データはどんな形で収集すればよいかを考えることが大切です。 シンプルで低コストなA/Bテストの利点 A/Bテストは、AとBの施策を比較するシンプルなテストです。運用や判断がしやすく、低コストで少ない工数で実施できるため、リスクが少ない。A/Bテストを行う際には、目的や仮説をしっかりと明確にし、有効なデータが集まるまで実施します。ただし、複数の要素をテストしたい場合には別の手法を検討すべきです。また、パターンは同時に同じ期間行うことが必要です。 データ分析の第一歩は何から始める? 解決策を考えるときには、必ず複数の選択肢を検討し、「ステップを踏んでのデータ分析」と「仮説を試しながらのデータ収集」の両輪で分析を行うことが効果的です。分析が苦手な方には、まず身の回りのデータを分析すること、分析の練習を積み重ねること、そして問題にはそこに至るまでの流れがあることを意識することをお勧めします。

データ・アナリティクス入門

ロジックツリーで描く未来

4視点の意義は? 問題解決のステップとして、「What」「Where」「Why」「How」という4つの視点があることを学びました。関係者間で「あるべき姿」や「ギャップ」の認識を共有する重要性にも触れ、特に問題を特定する際には、単なるアイディアに頼らず、定量的な数値を比較することで、より客観的に捉えられる点が印象的でした。 原因はどう見る? また、原因分析においてはロジックツリーを用いることで、漏れなく重複なく問題を分解できることを実感しました。全体を複数の部分に分ける「層別分解」や、詳細に細分化して検討する「変数分解」といった手法も、新たな気づきとなりました。 合意形成は可能? チームプロジェクトでは多くの関係者が参加するため、事前に「あるべき姿」や「ギャップ」を共有し、チーム内で合意形成をとることが必要だと感じました。特に、最初の「What」が明確でないと、後のステップで方向性がぶれてしまうため、優先的に確認しながら進めることが重要です。 ロジックの活用は? MECEの考えを意識していましたが、実際にロジックツリーを書き起こして検討する機会が少なかったことは反省点でした。今後は、層別分解と変数分解をそれぞれ活用し、チーム内の合意形成に役立てていきたいと考えています。 手順の意図は? また、クリエイティブな業務では、Howのアイディアから発想してしまいがちです。そのため、4つのステップの順序に沿って思考する癖をつけることが必要だと感じました。日常生活では、電車内の広告などを見ながら、「何を狙っているのか」「どのような問題が起こり得るのか」「その原因は何か」「どうすれば解決できるか」といったプロセスを意識してみるとよいでしょう。さらに、業務中にも毎日5~10分間、ロジックツリーを用いてざっと洗い出す習慣を取り入れていきたいと思います。

マーケティング入門

顧客を惹きつける表現の極意を学ぶ

商品魅力はどう伝える? 今週は「どう魅せるか」を考えることに集中した1週間でした。顧客に正しく商品の魅力を伝えるためには、その商品に対するイメージやメリットを理解し、効果的に伝えることの重要性を学びました。具体的には、ある商品の名称変更に伴うヒットの事例から、「はまる」表現の力を知ることができました。 普及要件はどう理解? さらに、新しい商品が普及するために重要な5つの要素、イノベーションの普及要件についても学ぶ機会を得ました。私の仕事では、新たな金融商品に関するサービスを開発する場面があるため、試用可能性などは今後の仕事に活かせる重要な視点となりました。 差別化の罠、どう防ぐ? 顧客を見ているつもりでも、つい競合他社との比較にばかり注目し、差別化を意識するあまり、肝心の顧客の気持ちから遠ざかってしまう「差別化の罠」についても理解が深まりました。これは、特に社内でよく起こることであり、慎重に対応する必要があると感じています。 普及のポイントは? 特にセキュリティトークンなどの普及していない金融商品サービスを開発する際には、イノベーションの普及要件が有効な指針となるでしょう。現在、同じ部署内で開発中のサービスはリリース直後で、提供予定の企業から機能のヒアリングを行いながらロードマップを作成しています。ただ、意見をそのまま取り入れようとする傾向があるため、それで大丈夫なのかとPdMに確認したいです。 実践にどう繋げる? 今週の学びが直接的に私の仕事に活かせる場面を具体的にイメージするのは難しいですが、自社プロダクトの開発チームと積極的に対話をしてみたいと思います。また、ナノ単科修了までに金融教育系のサービス企画書を完成させたいと考えており、その際に顧客が抱くイメージを設定し、サービス名(仮称)を検討したいと考えています。

クリティカルシンキング入門

データ分析のコツで業務効率アップを実感

数字分析で見える傾向は? 数字をいくつかのパターンでグラフ化し比較すると、傾向や特徴がつかめることがわかりました。知りたい情報に対して、意図的に複数の分析軸が必要であることも理解しました。特に一番の気づきは、一つの分析結果だけを見てすぐに結論を出すのは危険だということです。急ぐあまりに、ついやってしまいがちですので気を付けたいと思います。 分解時の注意ポイントは? また、切り口を考える際のポイントとして、全体を定義したうえでモレなくダブりなく分解していくことが重要だと感じました。意識してチェックしていないと、歪みが出ることに気付けません。 課題の本質をどう見抜く? 自分の業務では、お客様アンケートなどを整理する際の切り口を設定するときに使えると思いました。さらに、原因不明な状態で課題改善を依頼された際にも有効だと感じます。例えば、上司から「この課題はおそらくこの辺に原因があるからこの方向性で解決してほしい」と相談され、現場では「ほんとの原因はそこではないと思う」という意見の乖離があった際、どのように調整すればよいか悩むことがあります。そのようなときに、要素分解を用いて課題の本質を明らかにすることができると思いました。 精度の高い分析へ向けて 現在推進しているサイトのUI改善は、ヒアリングを中心に改善施策を検討していますが、今一度データの分析を掘り下げてみたいと思いました。その際に以下の点を実施しようと思います。 - 切り口を複数用意するために、分析に必要なデータを多く収集する - 手を動かして分解する - どんな切り口が分析に役立ちそうか関係者にもヒアリングしてみる - モレなく、ダブりなくの視点で問題ないか、分析の切り口を周囲の人と意見を聞き確認してみる 以上の点を意識して、より精度の高い分析を行いたいと思います。

戦略思考入門

差別化戦略で企業を選ぶ決め手とは?

成熟市場への取り組み方は? 成熟市場においては、差別化戦略が非常に重要です。差別化を図らなければ、業界のトッププレイヤーに対抗することは難しく、多くの場合コストリーダーシップに勝てません。しかし、差別化戦略を実行する際には、その軸を決定するのが難しく、ありきたりなアイディアに陥りがちです。そのため、「他業界事例の収集」と「集合知」を活用することが不可欠であり、自社の強みと外部の力を組み合わせる選択肢も考慮すべきです。 ターゲット設定はどう進めるべき? 差別化戦略においては、ターゲット設定が非常に重要です。競合と比較した際の自社の強みを理解し、顧客の詳細な情報を把握することが求められます。どの戦略も永遠に続くものではありません。市場環境の変化を踏まえ、常に戦略を見直し続けることが大切です。また、特定の戦略を選んだからといって、他の可能性を軽視してはいけません。 エリアビジネスでの差別化法は? 特にエリアビジネスにおいては、どのように競合他社と差別化を図るかが課題です。製品や価格での差別化が難しい中、何を価値として差別化を図るかを意識する必要があります。仮説としては、顧客接点での質が重要で、多くの業界プレイヤーがここで差別化を図っています。独自路線を進むためには、さらに顧客解像度と自社理解を深める必要があります。プロモーション部分でも最近は糸口を見出しつつあります。 顧客インタビューの活用法は? 実際に顧客へのインタビューを行い、自社の強みをどのように捉えているのかを確認しました。また、エンドユーザーが何を基に企業を選んでいるのかをヒアリングしました。その他業界事例の収集や、1社で構わないので、差別化に向けた明確な仮説構築も行っています。 以上のような取り組みを通じて、差別化戦略の成功につなげていきたいと考えています。

アカウンティング入門

ビジネスの心臓部を深掘る学び

P/Lの基礎はどう見る? 先週、P/L(損益計算書)の基本的な理解が大切であると学びました。特に経常利益について、これは持続的に利益が出るかどうかを測る指標であり、本業の儲けに加えて財務活動での収益や費用が常に発生するという基本的な認識を持てたことが、私にとって大きなプラスとなりました。 原価率はどう変化? 次に、売上原価率について、「原材料費が高くなっているのか、それとも原価率が高い商品が売れているのか」といった視点が学びとなりました。売上高が伸びた際には、原価率の変動原因を細かく見て、売上を形成する製品に基づいた戦略を立てることが重要だと感じました。また、当たり前のことではありますが、販売価格が低ければ原価率が上がる(クーポンによる安売りなどが原因)という点にも気付かされました。事業計画を達成するためには、利益を確保しつつ売上を伸ばすことが重要であると再確認しました。 取引先のP/Lって? そして、実際に取引先や競合他社のP/Lを読み解くことに挑戦したいと考えています。具体的には、営業外収益や費用がどの程度あるのか、売上原価率が企業や年度ごとにどのように変化し、何がその原因であるのかを理解し、それが戦略にどのように結びついているのかを把握したいです。また、新聞で最終利益が報じられた際に、売上総利益、営業利益、経常利益の中でどこが影響してその結果が生まれたのかを確かめたいです。 IR活用は確実? これを実践するために、11月に決算が発表された取引先企業のIR(インベスター・リレーションズ)を確認し、売上総利益、営業利益、経常利益の各利益率を同業界の平均や他社と比較することを毎週行いたいと考えています。この取組は、異なる業界である建設、エネルギー、人材業界から各1社ずつ選び、競合他社も含めた計6社を対象としています。

マーケティング入門

売上向上のためのターゲット戦略

誰が商品を買うべきか? 商品を成功に導くためには、誰に売るかを明確にすることが不可欠です。どんなに良い物でも、適切なターゲットを定めていないと、その魅力を十分に伝えることができず、売上につながりません。ターゲットに合わせたプロモーション戦略を作成することで、商品の訴求力を高め、顧客にその価値を感じてもらうことが可能です。 既存製品に新しい価値を? 自社製品の強みを組み合わせることで、既存製品であっても新しい価値を発見し、差別化を図ることが可能です。具体的な利用場面をイメージし、顧客がそこに価値を見出す手助けをすることが重要になります。 また、ターゲットと提供する価値がしっかりと結びつくプロモーション施策が必要です。市場の顧客に商品の価値を認識してもらえなければ、大ヒット商品につながりません。 競合との差別化ポイントは? ポジショニングマップを用いて、競合との差別化を図るポイントを見つけ出すことも重要な作業です。自社の強みを2つの軸に絞り込み、市場開拓を進め、ターゲットを明確にすることで、経営資源を有効に活用し、費用対効果を高めることが必要です。 新規事業、特にBPO業界に参入する際には、まず自社のリソースを活用し、顧客に価値を感じてもらえる分野を特定することが求められます。その後、特定した価値に魅力を感じる市場やターゲットを定め、選択と集中を行います。そして、訴求ポイントを強化するために必要なスキルの獲得や品質の向上を図ります。 ターゲット設定の基準は? 最後に、セグメンテーションの切口を探し、ターゲティングの評価基準である6Rを考慮しながらターゲットを定めることが肝心です。さらに、競合と比較しながらポジショニングマップを利用して、自社の差別化ポイントを確認する習慣を持つことが、成功に導くための重要な戦略です。

「確認 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right