クリティカルシンキング入門

5W1Hで切り拓く新規事業の鍵

--- MECEを意識する重要性 切り口および分析について、常にMECE(Mutually Exclusive, Collectively Exhaustive)を意識して分析することの重要性を整理することができました。特に、導入部分での分析項目の洗い出しにおいて、いかに漏れなく切り口を探るかが検証の鍵であると理解しました。 新規事業企画での試み 現在、新規事業企画を行う部署に所属しており、偏見を持たずに課題を確認し、様々な視点で洗い出しと検証を行いたいと考えています。特に、5W1Hを使用して漏れなく確認し、価値ある人やモノを創出すべきかを見出したいと考えています。 5W1Hを活用すると? 月並みではありますが、5W1Hをしっかり検討しきったかを常に自問自答したいと考えています。分析時はもちろんのこと、客先にヒアリングを行う際にも、どの情報が不足しているかをフレームに照らし合わせて考えたいと思います。 ---

クリティカルシンキング入門

データ分析の新しい視点を発見!

目的と仮説の意義は? データ分析を行う際には、目的と仮説をしっかりと持って取り組むことが大切です。そして、分析の結果に対する「それでどうなるのか?」を明確にすることを意識しましょう。MECE(モレなくダブりなく)にグルーピングした後、そのグルーピングを自分でレビューし、精度を高めることも重要です。 自己レビューの限界は? 私は日常的に分析や示唆出しを行っており、適切な粒度でグルーピングをすることの重要性を感じています。しかし、自己レビューには限界があるため、まず自分でレビューをした後に、他者からのレビューを意図的に組み込むことで、多角的な視点を得るようにしています。 レビュー導入の理由は? 分析後には、レビューを求めるプロセスを自身の業務フローに組み込んでいます。他者のレビューを得るために、締切よりも早めの段階でアウトプットを心がけています。この取り組みは、企画を伴うすべての業務に適用しています。

データ・アナリティクス入門

数字が織りなす学びの物語

なぜ分析が進化する? ライブ配信を通じて、分析プロセスへの理解が深まりました。これにより、単に分析するのではなく、常に目的を念頭に置きながら、What-Where-Why-Howの視点でストーリーを組み立てる意識が高まりました。 データはどう伝える? また、グラフ作成時には実数と割合の両面からデータをビジュアライズすることで、情報のインパクトを分かりやすく伝える工夫が重要だと感じています。企画提案においても、企画の根拠や効果を示す際、数値だけでなく視覚的な表現を取り入れることで、読み手にしっかりと訴求できると考えています。 必要情報はどう整理? さらに、必要な情報は徹底的に収集し、自分だけで対応が難しい場合は、関係者にデータ提供を依頼するなどの手順を踏みます。データ受領後は、代表値やばらつき、外れ値などを実数と割合でビジュアライズし、効果を視覚的に分かりやすく確認することが求められています。

クリティカルシンキング入門

問題解決力で未来を創る!

どんな問いを立てる? 問題を明確に把握するためには、「問いは何か?」を起点にすることが重要です。問いを残し、それを意識し続け、組織全体で共有して方向性を統一することの重要性を学びました。また、データ分析では、データを加工し、数字を視覚化することで効果を高めることができると感じました。 論理枠組みはどう? 来年に向けた社内イベントや研修の企画書を作成する際には、今回学んだMECEやピラミッドストラクチャーを活用して、どこに問題があるかを特定し、論理的な枠組みを構築したいと考えています。これにより、主張を適切な根拠で支えられるようにしたいです。 根拠共有は十分? 来年度の社内イベント、特に新入社員プログラムの計画案を立てる際には、今年の結果を振り返りながら、アンケート結果を基に問題を特定し、プロジェクトチーム内でその情報を共有してしっかりと根拠づけを行っていくことを目指しています。

データ・アナリティクス入門

順路で解く成長の秘訣

段階分析はなぜ? 何か課題が発生した際、経験則だけで原因を探ろうとしがちですが、プロセスごとに段階的に分析することの大切さを学びました。「何が」「どこで」「なぜ」「どのように」という順番を意識することで、問題点を明確に把握できると実感しています。また、A/Bテストにおいては、条件を揃えることが重要である点も大いに勉強になりました。 なぜ集客難航? 現在、コンテンツの企画・販売に携わる中で、集客に関してかなりの困難を感じています。対象を広げるという対策を検討していますが、その前に、問題の所在と原因を絞り込む必要があると考えています。 新企画はどう進む? まもなく新たな企画・コンテンツ制作が始まるため、これまでの課題を整理し、具体的な提案につなげていきたいと思います。また、前回の販売時には十分なデータが取得できなかったことから、今後はデータ収集の方法についても検討していく方針です。

データ・アナリティクス入門

ひらめきを引き出すMECEの力

MECEでどう選ぶ? アイデア出しのプロセスで、MECEという手法を用い、全体像の中からアイデアを絞り込む方法が特に印象に残りました。たとえ評価基準で最終的に採用されないアイデアであっても、いったんすべて洗い出して評価することで、新たなチャンスや問題点を発見しやすいと感じました。 階層分析で何が見える? また、プロジェクトにおけるアイデア出しでは、階層ごとに分析することで、さまざまな発想が生まれやすくなる可能性を実感しました。同じく、課題を分析する際も、階層別や変数別に整理することで、より具体的な問題点に焦点を当てることができると感じました。 なぜ体感するのか? 現在は、アンコンシャスバイアスの解消を目指した若手ワーキング向けのフレームワークを企画しています。その一環として、MECEを取り入れたグループワークの時間を設け、同僚と一緒に体感する場面を設定したいと考えています。

データ・アナリティクス入門

多角的視点で広がる戦略の可能性

多角的視点は有効か? フレームワークの各視点を取り入れることで、仮説の幅を広げることができるとの示唆が非常に印象に残りました。たとえば、問題解決の4つのステップや、事業戦略の分析で利用される3C、サービス検討の4Pといった多角的視点を活用することで、より網羅的な分析が可能になります。 仮説の見直しは必要? 一方で、これまでキャンペーンの仮説を立てる際には、十分な視点を持たずに取り組んでいた自分に気付かされました。今後は、複数のフレームワークを意識的に取り入れ、仮説同士に網羅性を持たせることを心がけたいと思います。 継続検証で進化できる? また、複数の仮説を立て、継続的に検証を繰り返すことで、ABテストにおいて有意な差を見出せると期待しています。自分が企画するキャンペーンの成功に向けて、どのフレームワークが活用できるかを検討することが、今後の課題となるでしょう。

クリティカルシンキング入門

日常に学びを組み込むコツと発見

学習のサイクルを意識するには? 学習を振り返ることで、インプット、アウトプット、ディスカッションのサイクルを反復する重要性に改めて気づきました。また、表の分析や加工方法についても復習することができました。 新規事業企画における議論の重要性 新規事業企画の場面では、様々な切り口で分析し、加工して考えることの重要性を再認識しました。議論から得られる新たな視点にも気づかされたため、積極的に議論を進めていきたいと思います。インプット、アウトプット、ディスカッションの習慣をつけることを目指します。 日々の学習をどう組み込む? 日々の学習が基本であると感じました。どんなに忙しくても、生活の中に学習時間を組み込んでいく必要があります。日々の事象を視覚化し、構造化することで問題解決に取り組むことが重要です。読書や業務の問題点を視覚化して解決策を模索していきたいです。

データ・アナリティクス入門

ありたい姿でイベントを革新

どのアプローチを採用? サンクコスト、定量分析、MECE、ロジックツリーについて学び、問題解決プロセスではまず「あるべき姿」と現状とのギャップを明らかにすることが大切だと理解しました。また、正しい状態に戻すための問題解決と、ありたい姿に到達するための問題解決という2つのアプローチがあることも知りました。 自分の方向性はどうする? この学びを踏まえ、今自分がどちらの問題解決に取り組むべきかを見極める必要があると感じました。特に、イベント企画においてはロジックツリーが役立ちそうだと思いました。 どう進めるのか? 具体的には、毎月のイベント企画の際にはまず「ありたい姿」を描くことから始め、ロジックツリーを活用してイベント内容を検討したいと考えています。また、アンケート項目の作成に際しては、MECEを活用してバランスの良い検討を行いたいです。

データ・アナリティクス入門

妥協を捨てた学びの軌跡

現状の問題確認は? 問題を特定する際は、What、Where、Why、Howの観点から確認する重要性を改めて感じ、ABテストの存在も初めて認識しました。また、分析を進める中で「このくらいでいいや」という気持ちを捨て、徹底的に考え抜くことの大切さを実感しました。 企画実行はどう? 自ら企画を立案する際も、同じ観点で問題を明確にし、仮説を立て、データに基づいた検証を徹底することが必要だと考えます。そうすることで、企画の実行可能性が高まり、周囲からの賛同も得られると感じています。 学びをどう活かす? これまで学んだ内容を丁寧に振り返り、積極的な実践を心がけたいと思います。業務が繁忙になると学んだことをおろそかにしがちですが、本講義で得た知識を振り返り、日々の業務にどのように適用できるかを考える時間を常に確保していきたいです。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

「分析 × 企画」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right