マーケティング入門

自分発見!学びと挑戦の記録

イノベーションで何が変わる? 商品の売れる・売れないを考える際に、イノベーションの普及要件というマーケティングフレームワークを学びました。このフレームワークは、比較優位、適合性、わかりやすさ、使用可能性、可視性の5つの視点で商品を分析するものです。ある成功事例から、わかりやすいキャッチコピーや効果的なネーミングが、実際の商品価値を届ける上で非常に重要であると実感しました。 競合の罠はどう防ぐ? また、競合ばかりに意識を向けすぎる差別化の罠にも注意する必要があると学びました。万人向けの商品展開に固執せず、市場を細分化し、ニーズを深掘りすることで、顧客の価値観に沿った商品の提供が実現できると考えています。 どう伝えれば響く? さらに、イベントのタイトルやキャッチコピー、内容を企画する際には、イノベーションの普及要件を意識し、ターゲットにしっかりと伝えたい価値や訴求点が届くよう工夫していきたいと感じました。特に、比較優位性や分かりやすさの点については、直近のイベントで課題を実感したばかりなので、検証を重ねながらより魅力的に伝わる方法を追求したいと思います。 改善策はどう見つかる? 施策ごとにこのフレームワークを振り返り、学んだ視点を活かしながら、ネット販売などにおいて売れていない原因を分析し、改善策を考察していくつもりです。

データ・アナリティクス入門

データ分析で見る成長のカギ

比較の重要性って何? 分析の本質は比較にあり、効果を測定するためには、「Aがある場合」と「Aがない場合」を比較することが重要です。ただ「Aがある場合」だけを見ても、その効果を正確に測定することはできません。そのため、分析の目的に沿った適切な比較対象を選定し、分析したい要素以外の条件を整えることが必要です。この考え方を「Apple to Apple」と呼びます。 施策効果の見極め方は? 販促施策の効果を分析する際には、イベントやDM、SNSなどさまざまな方法がありますが、以前はアクションがあった顧客の反響のみを分析していました。今後は施策を行っていない期間の販売実績とも比較し、何をもって目標達成とするかを明確にして企画を立案します。データ分析を行う際には、まず分析の目的やゴールを明らかにし、どの情報を比較すればよいかを検討してから分析を進めなければなりません。 条件整理のポイントは? 「Apple to Apple」の原則に従い、分析対象以外の条件が揃っているかを確認することが重要です。施策を進める際には、データを蓄積するためにさまざまな条件を整えられるように企画します。また、エリア別の顧客属性分析を行う際に、どの比較対象が適切であるかについては、部署に持ち帰って相談し、より明確にすることが推奨されます。

戦略思考入門

差別化とVRIO分析で未来を切り拓く

どうして差別化に注目するの? 差別化の概念を新たに理解することができました。これまで、わが社の強みを「売れている商品」や「受け入れられているメンバー」と捉えていましたが、差別化が持続可能かどうか、施策の実現可能性があるのか、そしてみんながそれを実行できるのか、といった視点で考えることの重要性を学びました。 なぜVRIO分析が初めての発見なの? また、VRIO分析についても初めて知りました。自社の組織マネジメントを独立して分析することは新たな視点であり、大変勉強になりました。さらに、顧客視点の大切さを改めて強く感じています。 どのような分析で今後を見直す? 今後は、自社がうまくいっている理由をVRIO分析で分解し、営業の強みが何であるのかを考慮に入れて分析を進めたいと思います。商品、人材、経営を包括的に分析し、顧客が当社に何を求めているかを理解し、自社が今後育成すべき商品や技術、人材を特定していきたいと考えています。 企画立案に合わせて、早速分析を始めたいと思います。特に自社を十分に分析し切れていないことに気づいたので、学んだ5フォースとVRIO分析を活用して、まず自社の強みを把握したいと思います。その上で、人材育成に本当に必要な能力を明確にし、経営層にも迅速に承認が得られる計画を立てたいと考えています。

データ・アナリティクス入門

4ステップで掴む課題解決の秘訣

4ステップを理解? 今週は、問題解決の4ステップ「What(何が問題か?)」「Where(どこに問題があるか?)」「Why(なぜ問題が起きているのか?)」「How(どうするか?)」を学びました。これにより、問題を定量化し、範囲を絞り、原因を分析して具体的な解決策を導くという、論理的な課題整理の手法が実践的に理解できました。 ロジックツリーの効果? また、ロジックツリーの活用法も学び、問題を「モレなく・ダブリなく(MECE)」分解する方法が、構造的な分類や深掘りにとても役立つと感じました。現場での意思決定や具体的な課題整理に、この手法を応用できる点が印象的でした。 企画立案のコツは? 企画の立案時には、問題解決の4ステップを活用し、過去と未来の問題に分けて検討することで、理想の状態を明確にし、提案が本質から外れないよう注意することができると実感しました。加えて、アイデア出しの際にロジックツリーを用いることで、問題を細かく整理し、深い考察が可能になる点も大きな学びでした。 実行前に再確認? 思いついた企画をすぐに実行に移すのではなく、一度立ち止まって問題解決のステップを確認すること、そして企画が進行している段階でも都度、本来あるべき状態と現状のギャップを再確認することの重要性を感じました。

戦略思考入門

戦略再定義で見つけるゴールの真髄

戦略の再定義はどう? 普段、漠然と使用していた「戦略」という言葉を改めて定義し直し、「ゴールを明確化すること」の重要性を再認識しました。演習問題では「ゴールが明確でない」と感じましたが、実際の業務では「手段」に目が行きがちだと気付きました。「ゴール」についても、自分が考える「目標・ゴール」ではなく、組織全体としての「ゴール」を考える必要がありますが、異なる価値観を持つ人々の集合体である組織において、その「ゴール」を設定する難しさを感じています。今後、この点についてさらに学んでいきたいと思います。 企画業務で何を見抜く? 企画業務においては、企画の実現に向けた戦略的なアクションが必要です。人事部としての目指すゴールと事業本部の目指すゴールが初めから一致することは少ないです。そのため、傾聴して相手のニーズを分析し、必要に応じて人事部から提案することで、最終的に共通の「ゴール」を設定し、実現に向けた手段を検討していく必要があります。 論理と共通解は何? 自分の考えを論理的にまとめるだけでなく、周囲の人々の状況や考えを認識し、共通する結論、つまり目指すゴールや解決策を見出していくことが求められます。本講座のグループワークでも、自分の意見を押し通すのではなく、グループとしての最適解を導き出せるよう努力しました。

データ・アナリティクス入門

データで挑む問題解決の旅

問題解決の順序はどう? 問題解決のステップとして、「What, Where, Why, How」の順序で進めることが重要です。やみくもに分析を開始するのではなく、順序立てて進め、数字に基づいたストーリーを構築することが求められます。データ分析においては、比較対象をはっきりさせ、集めたデータをしっかりと加工し、原因を特定する努力が重要です。 採用改善はどう進める? 採用手法を模索する中で、SNSや自社サイトの採用ページの改善を進めるには、コンバージョン率やファネル分析を活用して、離脱ポイントを特定することが有効だと考えました。それにより、コンテンツの見直しも可能になります。 企画提案の進め方は? このように分析を進める際は、初めに仮説を立て、結論のイメージを持つことが肝要です。何のために分析をするのか目的を明確にし、課題を特定するステップで進行することが大切です。特に、来年度に向けての企画提案の時期においては、データを活用して説得力のある資料を作成したいと考えています。そのために、データ分析の手法を復習し、自分自身の知識として確立する必要があります。また、データをさらに深く理解するためには、エクセルの関数についても知識を深めることが必要そうです。これについては、AIを活用し、日々学び続けたいと思っています。

データ・アナリティクス入門

仮説が拓くアイデアの軌跡

結論仮説の根拠は? 仮説には「結論の仮説」と「問題解決の仮説(What/Where/Why/How)」があることを理解しました。結論の仮説に求められるフレームワークは多岐にわたると感じ、例えば4Pや3Cといった手法もその一例であると捉えました。ミュージックスクールの事例からは、結論の仮説を明確に導き出すプロセスが示されていたと理解しています。 データ収集の意図は? また、これまで目の前や世の中にある既存のデータを活用して分析する習慣がありましたが、今回新たにアンケートなどでデータを収集する視点も得ることができました。今後は、どちらの仮説を導くのか、結論の仮説か問題解決の仮説かを意識することから始めていこうと考えています。 結論強化はどうする? 直近では問題解決の仮説を考える機会は多かったものの、結論の仮説を出す場面が少なかったため、あえてフレームワークを意識して結論の仮説を構築する取り組みを強化したいと思います。 事例から何を学ぶ? 企画の提案に際しては、過去のデータのみから示唆を得るのではなく、競合や他社の事例などもフレームワークを活用し、結論の仮説を導き出せるよう努めます。まずは3C分析を意識して活用し、自社だけでなく市場や競合の動向も幅広くインプットすることを目指しています。

クリティカルシンキング入門

データ分析の神髄を学ぶ: MECE活用法

情報をどう加工する? 情報を分解して考える際のポイントについて学びました。まず、情報を加工して新たなデータが得られないかを検討します。そして、情報の分解には複数の仮説を立て、一度分けた情報だけで判断せず、別の視点から再度分析を試みます。数字を見るだけではなく、グラフ化することで認識しづらかった数字の特徴が浮き彫りになることがあります。 分析時のMECEの重要性とは? 情報を分解するときには、まず全体を定義づけし、MECE(Mutually Exclusive, Collectively Exhaustive)を意識した切り口を見つけます。これにより、重複や漏れがない分析が可能になります。アナリティクス分析時にも、見たままのデータに頼らず、別の視点を意識して分析することが重要です。 過去データの活用法を知ろう コンテンツ制作の企画段階では、MECEを意識し、どの顧客に対してアプローチすべきかを判断します。次の施策を始める前には過去のデータを集計し、数値をさまざまな方向から分解して、過去の傾向を徹底分析します。チームに情報を共有する際には、グラフを用いて視覚的に分かりやすく説明する工夫が求められます。このように、決めつけを避け、別の分解方法が無いかを考えながら分析を進めることが肝要です。

マーケティング入門

多角的な視点で拓くマーケティング

想定外の購買層は? 動画内で示された完全メシの主要な購買層が、自分が想定していたものとわずかに異なっていたことに気付きました。当初は20代~30代の男性をイメージしていましたが、ユーザーは多面的に存在するという事実を再認識する機会となりました。身近な事例を通じて購買者のペルソナを描くなど、複数の視点から自分の思考を見直す習慣を身につけたいと思いました。 マーケ思考の整理は? これまでマーケティングに関する業務は実践してきたものの、言語化して検討する機会はあまりありませんでした。今回、体系的に学ぶことで自身の頭の整理が進むとともに、今後の部下の指導にも大いに役立つと感じています。感性は個人で磨くしかありませんが、マーケティング視点の取り入れは誰にでも可能であるため、今後のチームの課題として積極的に取り入れていきたいと考えています。 企画評価の工夫は? また、企画を総評する際に、感性に基づく判断や好みが優先されがちであるという指摘について、現場から上がってきた企画の機能的価値と情緒的価値を分析し、伝えるためや売るために必要な要素を誰もが理解できる形で可視化・共有することが重要だと感じました。このアプローチを会議などでも取り入れることで、チームの総合力向上につながると期待しています。

デザイン思考入門

デザイン思考で顧客価値を見直す

デザインシンキングとは? デザインシンキングについて詳しく知らないまま申し込んでしまいました。授業中に製品デザインの話が出た際、「もしかしてデザイナー向けのコースなのか?」と思いました。しかし、ユーザーニーズをビジネス価値に変換する方法であることがわかり、「まさに自組織のミッションと合致している」と感じ、改めて受講して良かったと思いました。 顧客価値を高めるには? 転職支援の事業に従事しており、今後は中長期の継続利用や複数回利用が重要になってきます。その際、ユーザーの再利用意向やお勧め度といった顧客価値が重要です。しかし、短期業績や短期利益確保のプレッシャーがある中で、なぜ超短期の業績に結びつかないサービス変革にリソースやコストを投じるべきなのかをビジネス的視点で説得する必要があります。そこで、顧客価値とビジネスの接合点を強化し、このスキルを磨きたいと考えています。 再利用促進の具体策は? さらに、再利用促進が事業にどう影響を与えるかを重視しています。再利用を促進するための具体策を選定する際、その根拠や効果を財務的に説明できるようにしたいと考えています。現在、中長期利用のための企画書を作成中であり、その中で財務根拠や顧客ニーズを含む定量・定性分析を取り入れ、説得力を高める予定です。

データ・アナリティクス入門

データから学んだストーリー分析の重要性

問題解決の4ステップは? 問題解決には、what(何)、where(どこ)、why(なぜ)、how(どのように)の4ステップがあります。経験や勘に頼らず、まずは事象をMECE(Mutually Exclusive, Collectively Exhaustive)に分解することが根本的な解決につながります。 分析のストーリーは重要? データを目の前にして即座にグラフ化したり、平均値や割合を出すのではなく、「なぜそうなったのか?」というストーリーを持って分析することが重要です。 データ取得の企画段階とは? 今後進行する実証実験の検証項目を明確にするため、企画段階からデータ取得方法を組み込む必要があります。また、マーケティングインテリジェンスのグループに異動するにあたり、ネット上のデータを鵜呑みにせず、なぜそうなっているのかの背景をシステマチックに考えることが大事だと感じました。 実証実験のゴールは? 現段階で検証項目の洗い出しは終わっているため、最終的な実証実験のゴールと、理想的なデータを意識しながら、今月中に取得方法を検討します。また、市場調査ではデータだけでなく、なぜそのようなデータが集まったのかについて、社会動向をチームメンバーとディスカッションする機会を設けます。

クリティカルシンキング入門

問いから始まる学びの旅

なぜ問いが大切? まず、「問いから始める」ことの大切さについて学びました。講義中の演習では、分け方や分析方法を検討しましたが、分析や区分けにとらわれると、分析の本質が見失われがちです。最初に問いを立てることで、何のための分析なのかを明確にする必要性を再認識しました。これはイシュー設定においても同様で、まずは問いかけから始めることが重要だと感じました。 アウトプットは大丈夫? また、アウトプットの重要性についても実感しました。講座を通してロジックツリー、MECE、ピラミッドストラクチャーといった考え方を学んだ一方で、実際に活用できているかはまだ課題です。今後は、知識のインプットだけでなく、アウトプットを意識し、適切な脳の切り替えを行いながら実践していきたいと思います。 イシューの本質は? さらに、会議や企画立案の際に、イシューを明確にすることの重要性を学びました。業務に追われる中で、イシューが適切でないと、伝えたい主張が十分に伝わらないことを実感しました。そのため、事前にイシュー設定が正しいか、明確かどうかを確認し、しっかりと検討する姿勢が必要だと感じています。これからは、クリティカルシンキングの各種スキルを活用し、より良い判断ができるよう取り組んでいきたいと思います。

「分析 × 企画」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right