戦略思考入門

ROI視点で新たな価値発見

ROIはどう機能する? 掛けた時間に対して算出した数字をもとにROI(費用対効果)を求め、優先順位を決める手法について学ぶことができました。これまで忘れがちだった視点を改める良い機会になりました。 結果は何が違う? 実践練習では、従来は利益の順序を自分なりに判断した場合、売上ではA>B>C>D>E>Fという順になりましたが、ROIで見るとまた異なる結果になることを実感しました。具体的には、利益ではA>C>E>B>D=Fであったのに対し、ROIではD=F>A=C>E>Bという順位となり、両者の違いがはっきりと分かりました。 説得材料は増えた? また、ToBe(あるべき姿)とAsIs(現状の姿)を分析し、その差を埋めるための施策を考える際に、ROIの視点を取り入れることで、意思決定者に対する説得材料が増えると感じました。

データ・アナリティクス入門

数字の裏側を読み解く学び

データ深堀の意義は? 今回はこれまでの総括に加え、データを深堀するプロセスを順を追って学ぶことができました。目の前の数字を鵜吞みにせず、どのように分解できるかを都度確認することの重要性を再認識すると同時に、思い込みだけで動かないというデータ分析の基本を実感しました。 現場課題解決の鍵は? AIコーチングからは、実際の業務でどのようにデータを切り分け、仮説を立てて検証するプロセスを実践すべきか、また分解したデータをもとに現場の課題解決に直結するアクションプランをどのように構築するかという問いかけがありました。具体的には、まずKPIや社内で多くの方が注目している数字を切り分け、仮説の構築に取り組むべきと考えています。アクションプランについては、課題に応じて、自分の立場から現実的に着手できるものを見極めることで構築できると感じています。

データ・アナリティクス入門

数字に秘めたマーケ戦略の可能性

指標を再確認する? クリック率、コンバージョン率、A/Bテストなどの指標については、EC企業を得意先とした営業活動の中で既に馴染みがありました。しかし、理解が深まっていなかった部分もあったため、改めて学ぶことができ、大変有意義でした。 数値判断の秘訣は? ひとつひとつの項目を数値化し、比較検討する過程で、意思決定における数値情報の重要性を実感しました。WEBマーケティングが現業務において不可欠なタスクであることを再認識するとともに、今回の講座とW4の動画をもう一度見直し、さらなるスキルアップを図っていきたいと考えています。 データ分析の新展開は? また、社内で扱う売上実績データとWEBマーケティングで得られる情報との関連付けを進めることで、これまでとは異なる視点からの分析が可能になることを期待しています。

アカウンティング入門

見える化で挑む医療経営計画

事業計画をどう把握? まず、自らの事業計画において、P/LやB/Sがどのように変動するかをイメージすることが重要だと感じました。何にいくら費用がかかるか、その詳細をじっくり考え、可視化することが求められると思います。 医療業界はどう分析? 次に、病院単体のP/LやB/Sを参考にするのは難しい面があるため、関連する医療業界全体の数字を分析し、学んでいくつもりです。医療業界全体の差分を理解することで、具体的に医療機関におけるP/LやB/Sの概念が把握できると考えています。 事例から何を学ぶ? さらに、例えば、もともとの事業の強みを活かしながら方向性を修正しているある企業の事例から、ヒントを得ることも参考になると思います。まず関係する業界の状況を把握することが、医療機関向けの理解を深める第一歩となるでしょう。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

戦略思考入門

内外の視点で創る自分改革

分析はどう役立つ? 現状分析は意思決定において非常に重要だと感じます。強みと弱みは表裏一体であり、両者を完全に分けることは難しいですが、恐れずに強みを最大限に活かすことが求められると実感しました。一方で、外部環境や社会情勢といった要素は正確に分析するのが難しく、これらの分析が意思決定にどのように影響するかをしっかりと理解する必要があると感じました。 理想実践のヒントは? 今回学んだフレームワークを活用して、チームの現状と理想の姿を明確にしていきたいと考えています。内在的な要因だけでなく、外部の要因に対する分析も重要であり、そのプロセスをより深く学ぶ必要性を強く感じました。外部要因の正確な分析には一定の経験と広い視野が必要だと認識しており、今後もさらなる学びを通じて、そのスキルを磨いていくつもりです。

戦略思考入門

理論と実践で磨く戦略力

戦略思考はどこに効く? 戦略的な思考方法を体系的に学ぶことができ、実践を重ねることでフレームワークの理解が深まりました。講座で得た知識は、単にビジネスシーンだけでなく、自己分析にも有効であり、今後のビジネスプランを構築する際に大いに役立てていきたいと感じています。 部署立て直し戦略は? まずは、自分の部署の立て直しにこのフレームワークを活用する計画です。自社の理解を深め、企業のゴールを踏まえた上で、部署の目標設定と現状把握を行います。自分自身で課題を見つけ、解決策を考えた上で、その考えをスタッフとも共有し、各自に現状把握から課題発見と解決策の検討を促していきます。 工数削減効率向上は? また、契約上の人月がマイナスである現状を踏まえ、工数を削減することで業務の効率化に取り組む予定です。

データ・アナリティクス入門

未知の平均値に挑戦

指標の基礎はどう? これまで平均値と中央値を用いた分析は行っていましたが、加重平均、幾何平均、標準偏差といった他の指標については十分に理解していませんでした。今回、これらの指標の基礎を学ぶ中で、その重要性を実感しましたが、実際に活用するとなるとまだ課題が多いと感じています。今後は、これらの考え方をさらに深め、実践的な使い方を模索していきたいと思います。特に、経営指標として必要な幾何平均については、実データを用いて分析に挑戦する予定です。 どんな分析を試す? 自社製品の原価と営利に関する調査・分析の中で、今回学んだ幾何平均を早速活用し、過去のデータを基に営利分析を実施します。また、部門ごとの工数分析では、業務に費やす時間だけでなく、関わる人数も考慮に入れて評価し、より客観的な分析を目指します。

データ・アナリティクス入門

実践で知るデータ分析の極意

振り返りの授業内容は? 今週は、これまでの学びを総合的に振り返る機会となりました。ライブ授業の録画を視聴し、講師や参加者の意見を聞きながら、実践的な課題に取り組む中で、分析の基本的な考え方や手順をストーリーとして学ぶことができました。最初に何をするのか、どのような課題に着目するのか、データの収集方法や加工の仕方、そしてどのように結論に結びつけるのか、という流れが非常に分かりやすかったです。 比較考察ってどう考える? また、社内にある商品の魅力度や売上の既存データを単独で捉えるのではなく、何らかの基準と比較しながら考察する重要性を再認識しました。問題の要因分析においては、一面的な意見に頼らず、ほかにどのような可能性があるのかを自分なりに掘り下げてみる姿勢が大切だと感じました。

マーケティング入門

仲間と挑む、マーケの実践記

認識をどう統一すべき? マーケティングの多様な解釈を踏まえ、実際の業務において仲間と認識を統一する必要性を強く感じました。また、セリングとマーケティングの違いを知ることができ、進め方によってはマーケティングではなくセリングになってしまう点も学びになりました。 活用法はどう考える? 具体的な場面でどのように活用するかはまだイメージがつかめていませんが、当社は具体的な製品ではなく、人やサービスを提供する立場にあるため、他社との違いを出すべく、日々変化する市場の動向から顧客が何を求めているのかを継続的に分析していきたいと考えています。 初心者はどう学ぶ? マーケティングに関しては未経験のことも多いため、様々な手法や過去の経験を交流を通じて身に着けていければと思います。

データ・アナリティクス入門

データに隠れた学びの宝石

代表値の役割は? 今回の学習では、数字と数式における代表値とばらつきの概念を学びました。代表値では、平均値、加重平均値、幾何平均値、中央値、最頻値という各種の指標の使い分けを学ぶとともに、平均値の弱点についても理解を深めました。 ばらつきの意味は? また、ばらつきを示す指標として、分散と標準偏差があることを学びました。これらの指標を使うことで、単に中心傾向を示すだけでなく、データ全体の分布やばらつきの様子を具体的に把握できるようになりました。 実践でどう活用? 今後は、日常的なデータ分析において、平均値だけでなく、加重平均値や中央値などの代表値を適切に使い分け、さらに必要に応じて分散や標準偏差も活用することで、より豊かな情報の抽出を目指していきたいと思います。

データ・アナリティクス入門

Excel実践で磨くデータ思考

データ分析の意味は? データ分析では、比較と独自の観点が価値を生むと感じました。基本的な内容でありながら、Excelでの実践的な手法を学ぶ中で、自分の思考プロセスが整理され、視野が広がったと実感しています。 フレームワーク活用の秘訣は? 今回学んだフレームワーク、たとえばファネル分析や3C、4Pなどを中心に活用したいと考えています。定期的に振り返りを行うことで、より効果的な比較ができるよう意識して取り組むつもりです。 転職後の展望は? さらに、業務においても今回の学びを基礎として活用します。今後、データマーケティング職への転職が決まっているため、壁にぶつかったときは学んだフレームワークや思考プロセスに立ち返り、より広い視野で問題に取り組む方針です。
AIコーチング導線バナー

「分析 × 学ぶ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right