データ・アナリティクス入門

小さな仮説、大きな成長

なぜ仮説が必要? 仮説は非常に重要です。急いだり怠ったりして、仮説を立てずにいきなり方法論に入ると、結果として時間が余計にかかるか、誤った方向へ進んでしまう可能性があります。 どう検証すべき? また、仮説はあくまで仮の答えであり、その検証が必要です。検証のためには目的意識を持ったデータ分析が不可欠です。そのため、たとえ「答え」となりうるものであっても、複数の仮説を立てることが求められます。さらに、3Cや4Pなど異なる切り口を用いることで、問題全体を網羅的に捉えることが可能となります。 疑いは成長の鍵? 加えて、仮説の立証を目的としたデータ収集や分析においては、自身の仮説が誤っているのではないかという視点を忘れずに実践することが重要です。こうすることで、自分に都合の良いデータだけを集めてしまうことを避けられます。 原因はどう見極め? 実店舗の売上やPLに関する業務では、好調な店舗と不調な店舗が存在します。いずれの場合も、その原因を正確に特定し、好調なら通例に従い、不調なら改善策を講じることが必要です。これまで、まず膨大な時間をかけてデータを収集していたところを、仮説思考を取り入れることで、何が問題なのかを先に明確にし、仮説を立てることから対応するようになりました。 何を意識すべき? また、目につきやすい場所に仮説思考に関するポイントやステップを掲示し、常に意識できる環境を整えることも有効です。正解や不正解を問わず、失敗を恐れずに実践していくこと、日常的に課題意識や疑問を持つこと、そして先輩たちの実践事例や経験から学ぶことが、さらなる成長につながります。

戦略思考入門

目的を再定義する学び

講座で得た大切なことは? この講座を通じて、自分が大切にすべきポイントを改めて認識することができました。まず、目的を定めることの重要性を痛感しました。ゴール設定や論点を正確にするために、必ずシンプルなフレームワーク(例えば、3C、バリューチェーン、コスト削減やバリュー拡張、5F視点)をセットで活用し、全体像を一旦俯瞰することの効果を実感しています。また、ターゲットを誰にするのかを明確にし、その理解を自社だけでなく取引先にも広げる必要があると学びました。そして、限られた資源の中で本当に重要なことにフォーカスするために、不要な部分を捨てるという考えが、最終的には顧客満足につながると感じました。 日常で学びはどう変わる? これらの学びは、日常生活のさまざまな場面で応用できると感じています。ビジネスシーンにおいては、3Year planやNegotiation、サービス開発などで、目的や資源、ストーリーテリングの視点を持つことで、規模が大きいプロジェクトでも立ち返りながらクイックに分析ができるようになりました。また、自身のキャリアを検討する際には、自分のユニークな強みや差別化戦略を振り返ることが、経済価値や希少性、模倣困難性、組織への影響などの観点から自分自身を理解するための手助けとなっています。さらに、家族や同僚、友人と接する場合にも、短期から長期までの目的や現状とのギャップを確認し、優先順位を整えることの大切さを実感しました。プライベートな時間の使い方についても、あるべき姿を思い出しながら自分なりの仕組み作りを進めることができ、受講中の学びが多方面で活かされると感じています。

戦略思考入門

全体を見据えた戦略の軌跡

戦略全体はどう見える? 経営戦略の全体像を学び、普遍な理念、中長期的なビジョン、そして具体的なアクションプランとしての戦略が存在することを理解しました。戦略は、部分最適を排除し全体最適を実現する有効な手段であり、優れた戦略を立てるためには中長期的な視点と、内外の環境を含む多方面の知識が必要であることを改めて感じました。 実践の足りてる? また、GAiLでの振り返りを通して、学びを身につけるためには実践が不足しているという点にも気付かされました。 全体視点は十分? 自社においては、経営理念やビジョンの確認を踏まえ、経営戦略を再認識する必要性を感じています。業務面では、食品卸の営業活動において、各カテゴリーごとに提案を行なっていますが、担当するカテゴリーだけでなく、他のカテゴリーも含めた全体を意識することが大切だと考えました。後から振り返るだけでなく、活動前に戦略的な考察を深める姿勢が求められています。カテゴリー横断での取りまとめが増える中、部分最適に陥らないよう、中長期的な視点を強く意識する必要があります。 具体的な行動計画としては、まず自社の「経営理念」と「ビジョン」の確認を5月中に実施し、その後、所属する業界のPEST分析や自社の3C分析、そして自分が担当するカテゴリーと取りまとめを行う他の3カテゴリーについての3C分析を6月内に行う予定です。また、朝の30分や通勤時間を利用し、学びの習慣を継続していきたいと考えています。現時点ではフレームワークをノートを見ながら使用しているため、まずは各分析を通じて経験を積み、知識を深めていきたいと思います。

戦略思考入門

振り返りで築く未来戦略

どうして多角的な見直し? 仕事において、毎回全てを実施できるわけではありませんが、多角的に物事を見直す「ここぞ」というタイミングを見極めることは重要です。スポーツのビデオレビューのように、過去の自分の行動を整理し、継続するための指針としてまとめることが効果的だと感じました。また、状況に応じて敢えて一つに絞る戦略も大切であると学びました。 定量分析の習得は? 一方で、理系的な定量分析による仮説ベースの戦略思考は、習得に時間を要する課題であると理解しました。指導を受けながらも地道に実践していくことで、徐々に身につけられるという点に納得しています。 キャリア設計はどうする? これからは、3年間の出向が終わる9月以降に自身が取り組む業務を提案する際の題材として、本学での学びを活かしていきたいと考えています。自動車業界は電動化、自動化、DX化などの急激な環境変化に直面しており、その中で「何をやり、何をやらないか」をはっきりさせるために、将来のキャリアプランを見据えた目標設定が欠かせません。 戦略確立の秘訣は? そのために、以下の点に取り組む予定です。まず、自分の将来ビジョンを明確にし、具体的な目標を設定します。次に、現在の課題や管理職のニーズ、組織リソースなどをしっかり情報収集・分析し、全体の整合性を取っていきます。また、自分が行う業務について専門性やスキル、市場環境の観点から差別化を図り、想いや将来性といった軸を定めた上で選択を行います。最後に、その取り組みが本質やメカニズムに合致しているかどうかを整理し、戦略の確立を目指したいと考えています。

戦略思考入門

学びの視点を広げる新しい戦略

学ぶ視点を広げるには? 勉強を続けるための考え方を改めて見直す必要があると感じました。特に、人を巻き込むことで他者の意見を聞き、広い視点で学ぶことができるため、思考の幅が広がり刺激を受けます。それにより、継続的に取り組んでいくことが可能になります。しかし、時間の使い方はまだ定着しておらず、課題に取り組む際には想定以上の時間がかかっているのが現状です。 理想像を描くプロセスとは? 自己の理想像を描くことの重要性を強く感じました。そのためには、現状を幅広い視点から把握する必要があります。これは、理想の姿やその道筋が時折変わるためです。 効果的な戦略策定のステップ ちょうど業務で戦略を考えるタイミングにあったため、以下の理解や取り組みがスムーズでした。まず、中長期(3年後)の目標、すなわちありたい姿を設定します。その目標を達成するための課題を明確化し、現状把握に基づいて課題を克服するための短期計画を立てました。 さらに、戦略策定ワークショップを実施し、様々な視点で物事を考える環境を整えました。また、関係者との情報共有を積極的に行い、助言を得ることで他者の意見を収集し、視点を広げました。 コミュニケーション戦略の分析方法は? サステナビリティ・コミュニケーション戦略を策定する際には、現状分析にも力を入れました。具体的には、自身が担当してきたコミュニケーション業務の結果や効果の確認、現状の各ステークホルダーとのコミュニケーションの洗い出し、結果と効果の確認、社外評価の分析などを行いました。これにより、戦略策定がより具体的で効果的なものになりました。

戦略思考入門

リソースを活用した効果的な学びの秘訣

リソースの投入はどう? リソースは限られているため、最も効果的な場所にリソースを投入する必要があります。そのためには、優先順位を明確にし、判断基準をしっかり持つことが重要です。事例で学んだROI(投資した資本に対して得られる利益の割合)は非常に参考になりました。また、手元に判断材料がない場合には、仮説思考を活用して検討を進めることも有効です。異なるパターンを考慮し、ポジティブ、ネガティブの両面から設定を検討するのもよい方法です。複数の視点を持って考えることは、ビジネスの複雑な状況において必要不可欠です。 ROI評価、改善は? 判断過程でROIが低い業務は、思い切って見直すべきです。戦略においてはメリハリをつけて判断し、数値に基づいて決断することが求められます。 業務の見直しは? 自身の業務を見直す際、費用対効果を考えてみます。時給9千円に見合っているかどうかも考慮します。 業務改善の具体策は? - **帳票管理** 帳票の整合性確認に時間がかかっているため、これを自動化することを検討します。 - **報告資料** 報告内容が多く、時間がかかるため、上司が使わないであろう報告内容は簡略化します。 - **新規顧客獲得活動** マッチングプラットフォームを用いた活動で受注率が低いため、自組織の強みを活かした案件にシフトし、紹介活動に力を入れます。 - **活動行動ログ** より良い目標に向かうために活動の目標を明確にし、それに基づくデータを再確認します。正しい分析を行うために、ゴミデータの除去も意識します。

データ・アナリティクス入門

切り口が未来を拓く

どんな仮説を考える? 仮説を事前に多角的に考えることが重要です。仮説を構築するための材料として「比較の軸」が存在し、Week2の設問4では「どのような切り口が考えられるか」という問いかけがありました。そこで、いくつかの切り口を無理のない範囲で検討した結果、Week3の設問1における仮説パターンの設定が容易になりました。切り口がなければ、「30歳前後のビジネスパーソン」以外の像を描くのはすぐに行き詰まってしまいます。しかし、切り口を明確にすることで、切り口の個数や各切り口が持つ要素数が設定でき、その掛け算によって仮説パターンを構築する枠組みが整います。仮説は「そのパターンであれば、どのような状況や条件が考えられるか」という、一定のとっかかりをもって検討することが可能となります。 成長指標をどう見る? また、事業の成長を示す指数の設定についても考える必要があります。成長の指標としては、直接的には「売上」や「利益」が挙げられますが、これだけでは解像度が低く、分析やそれに基づくアクションの軸としては不十分です。エリアや商品分類ごとといった軸を設定し、より具体的な分析ができるように解像度を上げる必要があります。 どんな軸で考える? さらに、軸を設定する段階ではまず「切り口」となるアイデア出しが求められます。たとえば、分かりやすい切り口として「エリア」や「商品」が考えられますが、その他に「時間」や顧客側の分類(顧客、部門、属する業界など)も有効です。このようなアイデア出しの際には、ロジックツリーやブレーンストーミングといった手法が有効に活用できると考えます.

データ・アナリティクス入門

マーケティング戦略を基礎から応用まで徹底理解

ナノ単科で得た学びとは? 今回のナノ単科を通じて、多くの学びを得ることができました。特に、マーケティングの基本的な考え方やその応用について深く理解することができ、非常に有意義な時間となりました。 基本概念の業務への活用 まず、マーケティングの基本概念を学ぶことで、自分の業務にどのように活かせるかを具体的に考えられるようになりました。特に市場分析やターゲティング、ポジショニングといった基本的なフレームワークを使用することで、より効果的な戦略を立案する基盤ができました。 具体的事例からの学び 次に、具体的な事例を通じて学んだことが大きな助けとなりました。実際の企業がどのような戦略を取っているのかを理解することで、自社の戦略にも応用できるヒントを得ることができました。この部分は、実務に直結する知識が多く、特に印象に残っています。 多様な視点を得る方法は? また、課題に取り組む中で自分の意見をまとめる力や、他の受講生とのディスカッションを通じて多様な視点を得ることができました。これにより、自分の考えの偏りを修正し、より広い視野で物事を見ることができるようになりました。 未来の業務にどう活かす? 最後に、今後の業務において今回の学びをどのように活かすかを考えています。マーケティングの基礎知識を活用し、より戦略的に物事を進めることで、組織全体の成果に貢献できるようになりたいと考えています。 以上のように、ナノ単科を受講することで得た知識と経験は、今後のキャリアにとって非常に有益なものとなりました。引き続き、学びを深めていきたいと思います。

データ・アナリティクス入門

データ分析で見つけた新たな視点と仮説の立て方

データ分析の進歩を実感 これまでの実践演習のおかげか、ライブ授業の例題の際、自分が受講以前よりデータの着目ポイントがわかるようになったこと、仮説を複数出すことが怖くなくなっていたことに気付きました。また、ライブ授業の中で出てきた「やみくもに分析しない」という点も、性格上ハマりやすい沼だと思うので、優先順位を考えつつリソース配分を意識しながら分析したいと思います。 ディスカッションでの学び方とは? ディスカッション形式で例題を解くことで、人によってデータの見方や感じ方が違って面白かったです。一人でこっそり分析するよりも、複数人で話し合いながら進める重要性を感じ、実務でも活かそうと思いました。 新規事業におけるフレームワーク活用 新規事業を担当しており、これから多くの施策や企画を立ち上げる機会が増えると思うので、その際には効果的な施策を打ち出すために、問題解決のフレームワークを使って体系的に進めていきたいです。今回の講座で学んだ大きな収穫の一つは「振り返ることの重要性」です。グループワークを通して意見を交換し、その際に振り返りとして自分の考えをまとめる時間があったことが学びに繋がりました。施策を打った後も、その振り返りを必ず行い、次に活かせるようにしたいと考えています。 データをどのように活用すべき? 今後も引き続きデータ分析の講座や研修を積極的に受けたいです。実務レベルでは、常に仮説を持ち、複数の切り口からデータを分析・比較し、結果の検証を行うという順番を意識しています。一部のデータだけを見てすぐに判断しないように気を付けたいと思います。

クリティカルシンキング入門

データ分解で見える新視点の魅力

数字分析の本質は? 数字を分析するとき、一つの要素だけでなく、複数の要素を組み合わせて分解することで、新たな視点が得られることがわかりました。分解することで初めて見えるものがあり、実際にデータを操作してみることの重要性を感じました。エクセルで表をダウンロードし、関数や条件付き書式を使って分析することで、数字に隠れた情報も明らかになりました。また、どの要素をどのように分解すればどんな結果が出るのかを予測しながら作業することが、分析の精度向上に繋がると実感しました。 工数分析の効果は? 具体的には、コールセンターの効率化にこの分析手法を活用したいと思います。応答時間、後処理時間、入電内容、お客様の待ち時間などの観点から、それぞれの業務にかかる工数を数値化できます。これにより、どの業務に多くの工数を費やしているのかを可視化し、効率化の余地がある業務を特定することが可能です。 多角度分析のヒントは? さらに、コールセンターでは顧客から情報を得るだけでなく、それを様々な角度で分析して新たな顧客獲得のヒントを見つけることができると感じました。こうした情報は営業やマーケティング部門でも必要とされるでしょう。どんな情報が役立つかを部署間で話し合い、共有することが重要です。 新たな要素を探す? 今後、毎月集計しているお問い合わせ内容や顧客情報を新しい要素で分析してみたいと考えています。これまではカスタマーセンターの視点で集計を行っていましたが、マーケティング部門の視点でどのように数字を分解できるかを検討し、目的に応じた分析を進めていきたいと思います。

戦略思考入門

フレームワーク活用の楽しさと難しさ発見

フレームワークってどう活かす? これまでの学習を通じてフレームワークの内容は理解したつもりでしたが、それを実践に移す難しさを感じました。総合演習では与えられた状況を分析する際、どのようにフレームワークを活用すれば良いのかを整理するのに時間がかかりました。こうした経験から、まずはフレームワークに落とし込んで見える化することの重要性を実感しました。また、「仮説設定と仮説検証」を繰り返して考えることの重要性にも気づきました。物事を分析し、ある結論に導くためには多くの情報の中から必要な情報を選び出し、仮説として組み立てる必要があります。そのためには、大胆に考えた後、仮説検証を十分に行うことが求められると感じました。 教育企画はどう進める? 現在担当している教育体系の企画業務においては、無暗に研修手段の情報を収集して選定するのではなく、自社の環境や課題をまず分析し、必要な施策を検討することの重要性を感じています。また、教育関連の企画においては仮説設定に重きを置く傾向があるため、実施の前に事業本部にヒアリングを行うなどして、仮説検証を十分に行う必要があると考えています。 分析で信頼を築ける? 自社分析や外部環境分析の際、SWOT分析やPEST分析といったフレームワークを活用することで、上司や他の人々にも納得しやすい提案ができると感じました。今後もフレームワークの活用を実践していきたいと考えていますが、フレームワークを使うこと自体が目的にならないよう注意し、企画の根本的な目的を忘れず、無理にきれいにまとめようとしないことも心がけたいと思います。

データ・アナリティクス入門

問題解決力を育むプロセスの魅力

原因の見極めは? 問題を解決する方法の一つとして、プロセスを分解して原因を明らかにするアプローチがあります。また、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて選定することが大切です。この際には、判断基準の重要度に基づき重み付けを行い、解決策を評価して選択します。 データで何が分かる? データを分析しながら問題解決の精度を高めるためには、ステップを踏んで行う方法や仮説を試してデータを収集し、改善につなげる方法があります。これらのアプローチを組み合わせることで、データ分析をより高度に行うことが可能です。 業務の見直しは? 現在、マーケティング関連の業務をしていなくても、特定の目標を達成するために、行動や業務フローを時系列や工程ごとに分解し、問題点やボトルネックを洗い出すことができます。これらの問題が実際にボトルネックとなっているかは、日々の業務を通じて確認、検証、改善を重ねることが必要です。このプロセスを通じて、実際に成果に結びつく行動を特定することが重要です。データ分析が可能となるよう、数値化された目標や行動(KPI)が設定されていることが重要な前提です。 残業改善のヒントは? 例えば、チームが抱える課題として残業時間の多さがあるとします。この場合、目標を「各スタッフの残業時間を月10時間以内に抑える」と設定し、各スタッフの業務工程を洗い出し、それぞれの業務にどれくらいの時間がかかっているかを分析します。そこから、効率化またはアウトソーシング可能な箇所を特定し、実際に実践することが望ましいです。

「分析 × 時間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right