クリティカルシンキング入門

データ分解で見える新視点の魅力

数字分析の本質は? 数字を分析するとき、一つの要素だけでなく、複数の要素を組み合わせて分解することで、新たな視点が得られることがわかりました。分解することで初めて見えるものがあり、実際にデータを操作してみることの重要性を感じました。エクセルで表をダウンロードし、関数や条件付き書式を使って分析することで、数字に隠れた情報も明らかになりました。また、どの要素をどのように分解すればどんな結果が出るのかを予測しながら作業することが、分析の精度向上に繋がると実感しました。 工数分析の効果は? 具体的には、コールセンターの効率化にこの分析手法を活用したいと思います。応答時間、後処理時間、入電内容、お客様の待ち時間などの観点から、それぞれの業務にかかる工数を数値化できます。これにより、どの業務に多くの工数を費やしているのかを可視化し、効率化の余地がある業務を特定することが可能です。 多角度分析のヒントは? さらに、コールセンターでは顧客から情報を得るだけでなく、それを様々な角度で分析して新たな顧客獲得のヒントを見つけることができると感じました。こうした情報は営業やマーケティング部門でも必要とされるでしょう。どんな情報が役立つかを部署間で話し合い、共有することが重要です。 新たな要素を探す? 今後、毎月集計しているお問い合わせ内容や顧客情報を新しい要素で分析してみたいと考えています。これまではカスタマーセンターの視点で集計を行っていましたが、マーケティング部門の視点でどのように数字を分解できるかを検討し、目的に応じた分析を進めていきたいと思います。

戦略思考入門

フレームワーク活用の楽しさと難しさ発見

フレームワークってどう活かす? これまでの学習を通じてフレームワークの内容は理解したつもりでしたが、それを実践に移す難しさを感じました。総合演習では与えられた状況を分析する際、どのようにフレームワークを活用すれば良いのかを整理するのに時間がかかりました。こうした経験から、まずはフレームワークに落とし込んで見える化することの重要性を実感しました。また、「仮説設定と仮説検証」を繰り返して考えることの重要性にも気づきました。物事を分析し、ある結論に導くためには多くの情報の中から必要な情報を選び出し、仮説として組み立てる必要があります。そのためには、大胆に考えた後、仮説検証を十分に行うことが求められると感じました。 教育企画はどう進める? 現在担当している教育体系の企画業務においては、無暗に研修手段の情報を収集して選定するのではなく、自社の環境や課題をまず分析し、必要な施策を検討することの重要性を感じています。また、教育関連の企画においては仮説設定に重きを置く傾向があるため、実施の前に事業本部にヒアリングを行うなどして、仮説検証を十分に行う必要があると考えています。 分析で信頼を築ける? 自社分析や外部環境分析の際、SWOT分析やPEST分析といったフレームワークを活用することで、上司や他の人々にも納得しやすい提案ができると感じました。今後もフレームワークの活用を実践していきたいと考えていますが、フレームワークを使うこと自体が目的にならないよう注意し、企画の根本的な目的を忘れず、無理にきれいにまとめようとしないことも心がけたいと思います。

データ・アナリティクス入門

問題解決力を育むプロセスの魅力

原因の見極めは? 問題を解決する方法の一つとして、プロセスを分解して原因を明らかにするアプローチがあります。また、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて選定することが大切です。この際には、判断基準の重要度に基づき重み付けを行い、解決策を評価して選択します。 データで何が分かる? データを分析しながら問題解決の精度を高めるためには、ステップを踏んで行う方法や仮説を試してデータを収集し、改善につなげる方法があります。これらのアプローチを組み合わせることで、データ分析をより高度に行うことが可能です。 業務の見直しは? 現在、マーケティング関連の業務をしていなくても、特定の目標を達成するために、行動や業務フローを時系列や工程ごとに分解し、問題点やボトルネックを洗い出すことができます。これらの問題が実際にボトルネックとなっているかは、日々の業務を通じて確認、検証、改善を重ねることが必要です。このプロセスを通じて、実際に成果に結びつく行動を特定することが重要です。データ分析が可能となるよう、数値化された目標や行動(KPI)が設定されていることが重要な前提です。 残業改善のヒントは? 例えば、チームが抱える課題として残業時間の多さがあるとします。この場合、目標を「各スタッフの残業時間を月10時間以内に抑える」と設定し、各スタッフの業務工程を洗い出し、それぞれの業務にどれくらいの時間がかかっているかを分析します。そこから、効率化またはアウトソーシング可能な箇所を特定し、実際に実践することが望ましいです。

デザイン思考入門

実践で感じたユーザー視点の魅力

アイデアの出し方は? ブレインストーミングを用いて短時間で多くのアイデアを出し、KJ法で整理して優先順位を明確にすることで、ユーザー体験の視点から課題にアプローチできると感じました。さらに、シナリオ法を使いユーザーの行動や感情を深く分析することで、課題解決の糸口が具体的に見えてきました。ペーパープロトタイピングを活用し早期にフィードバックを得ることや、バリューポジションを明確にして独自の価値を伝える手法、そして競合調査を通じてターゲットのニーズに合った方針を策定することが、ユーザーに寄り添ったWebサイトやサービスの提供につながると考えています。 チーム作業の効果は? 実践からは、ブレインストーミングをチームで行うことで個人では引き出せない多様なアイデアが見えてくることを実感しました。また、シナリオ法によりユーザー視点での課題が明確になり、解決策が具体的になった点も大きな気づきでした。これらの手法を組み合わせることで、より効果的なサービス作りが可能になると感じ、今後の実践に活かしていきたいと思います。 学びをどう活かす? 今日の学びでは、アイデア出しや製品コンセプト策定に関する重要なアプローチを学び、実践にどう反映させるかを考える良い機会となりました。ブレインストーミングやKJ法で個人では気づきにくい視点をチームで整理し、シナリオ法を通じてユーザーの想いや行動を深く理解することが、ユーザー中心のサービス作りに直結すると再認識しました。これらの知見を自分の業務に取り入れ、具体的な改善策を模索していく意欲が湧いています。

データ・アナリティクス入門

ビジネスにも活きる!ロジックツリー入門

ロジックで課題は見える? ロジックツリーを用いることで、曖昧だった課題や問題が階層分解や変数の使用を通じて、より明確に整理できると実感しました。また、ZoomなどのWeb会議の場で、ロジックツリーを活用しながら板書を行うことで、参加者が意見を出しやすい環境を作り出せることに気づきました。 損切りはどうすべき? サンクコストに関しては、新しい投資手段において、損失が出た場合の「損をしたくない」という心理的なバイアスが損切りを遅らせることがあると感じました。投資した株が収益性を見込めないのであれば、速やかに損切りを行い、収益性が期待できる他の株式に投資することの重要性を再認識しました。 データ選びの秘訣は? 以前、あるAI専業企業の方とお話しした際に「AIに入力するデータが現場の課題に適していないと、どれほど優れたAIであっても成果は上がらない。データ選定には全体の7割ほどの時間が必要」との意見を伺いました。この時、授業で学んだMECEや定量分析、ロジックツリーの重要性を実感しました。今後、工場内での課題解決を目指すAIのデータ選定にも、この知識を活用したいと思います。また、工場での品質管理の発表においても、ロジックツリーやMECEの考え方を活用して資料を作成したいと考えています。 競馬・テニスはどう活かす? また、競馬の予想にもロジックツリーや定量分析を活用したいと思っています。さらに、趣味の硬式テニスの大会後には、クラブの反省会でMECEなどの手法を取り入れられたら効果的だと感じています。

デザイン思考入門

一緒に見つける物流改革のヒント

配送改善はどうする? 物流系の新規顧客から、配送量が大幅に増加することに伴い、荷物搬入や配送ルートの最適化の要望がありました。顧客は「AIが作ってくれるといいな」といった漠然とした期待を持っていますが、実際には荷物搬入や配送ルートだけでなく、その周囲の人的なロジスティクスも含めた全体的な改善が求められています。そのため、AIに偏らず、顧客と共にさまざまな視点で検討していくアプローチが有効だと考えています。 現状把握はどう進む? 現段階では、初歩的なヒアリングのみが進められている状況です。3月中旬に終日現地で現状を把握する機会が予定されており、その情報を整理した上で議論を深める予定です。また、意思決定の分析手法も取り入れて、より具体的な提案に繋げていきたいと考えています。 本当の目的は何? 顧客はAI導入を絶対条件としていますが、実際には荷物搬入や配送ルートの決定に伴う残業時間の軽減を本当の目的としているのではないかという予感があります。そのため、初めから答えを求めず、多くのアイデアを出し合いながら気づきを得るプロセスが重要だと考えています。 対話が生む発想は? 発想を広げるためには、どうしても実務者が最初から解決策を提示しがちですが、グループで意見を交換しながら発散させることが効果的だと感じました。かつて恩師から「頭の中で様々な人とディスカッションすればいい」というアドバイスを受けたこともあり、実際に多くの人と対話しながら進めることで、よりよいアイデアが生まれるのではないかと思います.

戦略思考入門

挑戦と実践の成長ストーリー

どんな効果が期待? 新たな取り組みを実施する際には、まずコスト対効果を十分に考慮し、周囲の人々を巻き込んだ計画作りを行います。既存のノウハウや取り組みとのシナジーを見出すことで、より一層効果を高める工夫も大切です。また、現状を定量的に把握し、計画実施後に数値がどのように変化するかを予測することで、計画の有効性を具体的に見える化することが求められます。さらに、部門長や経営者の視点に立ってアプローチを考えることで、戦略全体の見直しにつなげることができます。 現場で何を議論? また、具体的な課題解決の現場では、人材育成、品質向上、業務効率化などに関する検討会で各施策を議論します。来年度に実施する中期経営計画では、目標設定、現状分析、課題の抽出、そしてKPIの設定が重要なステップとなります。これらを踏まえた上で年度ごとの取り組みを具体的に計画し、同僚や部下と連携して年度目標の達成に向けたマネジメントを実行していきます。 優先順位はどう? さらに、限られたリソースを有効活用するためには、優先順位の付けや不要な取り組みを削ぎ落とす意識が不可欠です。部下全員の取り組み状況を毎月トレースできるよう、簡易な確認体制を整えることも重要です。たとえば、係長に取りまとめを任せ、課題を報告してもらう仕組みがあると、係長のマネジメント力が向上し、その結果、上位者がより高い視点で戦略を考える時間を確保できるようになります。こうした仕組みが整えば、初期段階での気づきを着実に実践に移す余裕が生まれ、全体の効率も向上するでしょう。

データ・アナリティクス入門

仮説検証で切り拓く未来

プロセスはどう検証する? 問題の原因を明確にするためには、まずプロセスを分解して検証することが重要です。解決策として、複数の選択肢を洗い出し、しっかりとした根拠に基づいて絞り込む方法が有効だと感じます。 効果はどう比較? A/Bテストでは、施策の効果を比較しながら仮説検証を繰り返します。あらかじめ検証項目を明確に設定し、1要素ずつ検証することが大切です。 データで判断する? データに基づいた意思決定を行うことで、業務の効率化や成果の向上を目指します。日常の仕事の中で仮説を立て、適切なアプローチ方法を模索してきました。過去の経験では、業務過多のため情報共有が主にメールに頼っていた状況もあり、その際はA/Bツールを利用して、理解度や反応の良さといった観点から効果のある方法を試してみました。例えば、メールでの通知と社内共有ドライブへの保管を比較する取り組みが挙げられます。 学びをどう定着? Week5までに多くの分析手法を学びましたが、学んだ内容を自分のものにするためには、メモを振り返りながらフレームワークの活用やデータ加工、さらに比較する際にどのグラフを使用するのが最適かを検討することが必要だと感じています。まずは実践を通じて知識を定着させ、現代ではAIの助けを借りながら調査の時間や手間を省いていきたいと考えています。 新分野はどう理解? また、動画学習を通じてWebマーケティングの指標など新しいエリアにも触れる機会があり、専門外の分野に対する理解がさらに深まったと実感しています。

データ・アナリティクス入門

因果の謎を解く学びの旅

因果と相関、どう考える? 相関関係と因果関係をセットで分析すると、その結果をもとに具体的な打ち手を考えやすくなります。具体的には、因果関係が成立するためには、「時間的順序が正しいこと」「相関関係が存在すること」「第三の要因が介在しないこと」という3つの条件を満たす必要があります。 時系列分析ってどう? また、過去のデータを活用して将来を予測する際には、時系列分析が非常に有効です。これに加えて、パレート分析やウォーターフォールチャートといった手法も、データの分析や可視化に役立ちます。 データ収集は大丈夫? データ収集にあたっては、対象が意味のあるものであるか、アンケートや口頭での聞き取りといった方法が適切に実施されているかを確認することが重要です。 契約商品の予測はどう? さらに、契約商品同士の相関関係や因果関係を把握することで、因果関係が認められる商品から、契約しやすい商品を予測して提案することが可能になります。特に、履歴などの時系列データを活用して、時系列データの4つの要素を理解し、使用するデータが何に該当するかを明確にした上で分析を行うことが求められます。 定義変更、何をチェック? 最後に、データの収集段階では、データの定義が変更されていないかどうかを確認した上で、顧客情報や各種商品の契約状況をリスト化し、各種商品間の相関係数を算出します。もし、相関が認められる商品同士に因果関係が存在する場合は、その因果構造に基づいた商品提案を検討することができます。

戦略思考入門

フレームワークで強みを見つけよう!

共通視点をどう築く? フレームワークを使用することで、周囲の人々と共通の視点を持って協議することが容易になります。これまでにさまざまなフレームワークを試してみて、その使い方が概ね間違っていなかったことを確認できました。しかし、バリューチェーン分析についてはこれまで使ったことがなかったため、まずは自社のマーケティング組織において、自分の組織の強みや弱み、活動の機会や脅威を探りながら練習として取り組んでみたいと考えています。 分析で方向は定まる? 自社のマーケティング活動を主体とした際、それを取り巻く企業の状況や競合を3C分析で整理し、その後SWOT分析で機会と脅威を明確化したいと考えています。これにより、活動の方向性をはっきりさせ、上位者と目線を合わせることで異なる認識をなくし、メンバー全体に浸透させ、同じ方向で活動することを目指しています。しかし、他の組織にその活動を受け入れ、浸透させるには困難が伴います。それぞれの組織には独自の責務が存在するため、共感を得るのが難しいからです。この点については、時間をかけつつ継続的に取り組んでいきたいと考えています。 計画整理の進め方は? まずはいつまでに何をするかを時間軸に沿って洗い出す必要があります。これまでは、アクションを自分の頭の中で考える事が多く、文章に落とし込む機会が少なかったため、自分のスケジュールで進めていました。しかし、なぜその整理が必要なのか、またいつまでに必要なのかを考え、逆算思考で行動を着実に進めていくことが今後の改善点となります。

クリティカルシンキング入門

直感を疑う問いのすすめ

どうして説明責任を重視? これまで直感や経験に頼って仕事を進めてきたことを改めて実感しました。しかし、どんな状況でも客観的に課題を見つけ出し、自分の言葉で相手に伝える―つまり説明責任を果たす―状態になりたいと強く感じています。そのためには「問いは何か」を意識し、適切な問いを自ら立てられるようになることが重要です。 顧客視点は伝わってる? 顧客に対する提案では、顧客が本当に得たいものや解決したい問題を明確にし、その立場に立った問いから物事を組み立てる必要があります。また、社内では上司や他部門と協力しながら、目標作成や調整を行い、自組織に有利な環境を整えることが求められます。さらに、組織内のメンバーとの関係を大切にし、共に課題を共有しながら進めることで、納得感のある目標や施策を実現することを目指します。 なぜ問いを立て直すの? 仕事に取り組む際は、まず自分の主観や直感に頼る前に「問いは何か?」と一度立ち止まり、状況を冷静に見つめる時間を持つことが大切です。そして、顧客の現状や向かっている方向性、顧客視点の問いを理解するため、情報収集、可視化、仮説の立案を行いながら、売り込みではなく対話を通じて議論していきます。加えて、数字に基づく分析を丁寧に行い、図表などを用いて分かりやすく説明することや、問いを共有する時間を意識的に取ることも重要です。 どうやって信頼を深める? 最後に、メンバーとのコミュニケーションの時間を積極的に確保し、組織全体で前向きに進むことを心がけたいと思います。

データ・アナリティクス入門

MECE思考で見える未来

情報で迷う理由は? データ分析の際、目についた情報に振り回され、時間がかかってしまうことや、都合の良い情報ばかりに頼って決め打ちになってしまう問題を感じています。そこで、MECEの考え方を取り入れることにしました。 MECEの切り口は? MECEには、全体を複数の部分に分ける層別分解と、全体を構成する変数に分ける変数分解という2つのアプローチがあります。たとえば、層別分解では年齢、季節、販売チャネルなどで分析し、変数分解では売上=客単価×客数や売上=商品単価×販売数のように捉えることができます。 分解できないのは? また、MECEに分解できない例として、モレなしでダブリがある、モレありでダブリがない、モレありでダブリもある場合が挙げられます。今後は、売上分析や業界、顧客分析、さらには業務の課題解決にもこの考え方を積極的に活用していきたいと考えています。 データ加工のポイントは? 現在、売上分析データを加工中であり、来週からはMECEの視点を取り入れたデータ加工を進める予定です。加えて、ロジックツリーを書き出すことで思考のスピードアップを図りながら、業務の課題解決に向けた取り組みも強化していきます。 情報取得の見直しは? 以前、情報の取得に時間がかかることや、都合の良い情報だけを集めて決め打ちしてしまう点に気がつきました。そのため、現在作成中のデータをもう一度フラットに俯瞰し、MECEを意識したフレームワークを使って再検討に努めています。

「分析 × 時間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right