データ・アナリティクス入門

比較で見つける日常データの宝石

データの隠れた意味は? 「分析は比較なり」という講師の言葉に、これまでの自分のデータに対する見方を改める衝撃を受けました。単に手元にあるデータだけでは、平均値や統計情報といった基準を算出することができず、その中に秘められた情報を読み解く重要性を再認識する機会となりました。 数字以外も活かせる? また、データ分析と言えば数字を思い描くことが多いですが、文字列などで表現される資料もまたデータであると教わりました。間接部門で働く中で、これまでデータに対して多少なりとも距離を感じていた私にとって、まずは日常の中で身近に存在するデータを取りこぼさず活用することの必要性を実感しました。 管理と復習は十分? 具体的には、毎日、毎週、毎月の使用単位で見落としがないかデータをチェックすること、一元的な保管場所を確保してデータの集計状況を整えることが挙げられます。迷ったときは今回の学びを振り返り、復習を繰り返すことで「データとは何か」を体で覚えていくことが大切だと感じました。

データ・アナリティクス入門

自分の視点で挑む数字の世界

数字の裏を見る? 数字をただ眺めるだけでなく、何を調べたいのか、どの点が重要かを事前に考える習慣が身についたと感じています。事前にどのようなデータが必要か、どんな情報がありそうかを予測し、仮説を立てることの大切さを、実際の分析を通じて実感できました。 売上の謎は? また、売上の上昇や下降といった大枠だけを把握した後、次のステップとして自ら仮説を立て、複数のデータを組み合わせて検証する練習にも取り組んでいます。データ分析専門のチームが示す資料をそのまま受け入れるのではなく、自己の視点でデータを比較検討することに注力しています。 実践の手順は? 具体的には、以下の手順で実践しています: ① 週明けに発表される週次予約情報や売上実績を前週と比較し、自分なりの考察を深める。 ② 得たデータを企画書に盛り込み、提出する。 ③ これらの実践にあたり、必要なデータの提供をデータ分析チームに依頼してみる。 これらの取り組みを通じ、分析力の向上を実感できています。

戦略思考入門

差別化で創るブルーオーシャン

孫氏の戦略はどう捉える? 孫氏の「戦いを略す」という戦略は、とても分かりやすく心に響きました。単に戦いを避けるのではなく、そのためにはさまざまな検討と対策が必要であることを実感しました。持続的な事業運営のためには、レッドオーシャンよりブルーオーシャンで生き残る戦略の方が成功確率が高いと理解し、そのブルーオーシャン状態を自ら創り出すことが戦略そのものと言えると感じました。さらに、他社との差別化もブルーオーシャン化の有効な手段の一つであると認識できました。この考え方に基づいて事業戦略を立案することが第一歩だと思います。 他社との差別化は何? これまで他社との差別化について深く考えたことがありませんでしたが、戦略を作る上で非常に重要な要素であると強く感じました。単に漠然とした差別化ではなく、どのようにブルーオーシャン化を可能にする差別化を実現するかを念頭に置く必要があります。まずは、他社と比較して一歩上の付加価値を追求するという意識を常に持つことが大切だと考えます。

データ・アナリティクス入門

仮説で挑む学びの実験室

仮説はどう整理する? 仮説を立てる際は、まず複数の仮説を考え、その中から適切なものを絞り込むことが重要です。それぞれの仮説が互いに網羅性を持つように、さまざまな切り口で考えを広げる必要があります。 データは十分かな? 次に、立てた仮説に基づいて分析に必要なデータを収集します。もし手元に十分なデータがない場合は、誰にどのように聞くかを決め、比較のためのデータも合わせて収集しておくことが求められます。 仮説の基本って何? 仮説思考とは、目的(コミュニケーションや問題解決)と時制(過去・現在・未来)を整理しながら、結論を導く仮説や問題解決のための仮説を立てる考え方です。 ギャップをどう埋める? 施策を検討する際は、現状(ASIS)と目標(TOBE)とのギャップ(GAP)に着目し、その差を埋めるために仮説を構築します。メンバーと意見を交わしながら、多くの仮説を出し合い、その中から絞り込みを行い、最終的に必要なデータを集めるプロセスが重要だと感じました。

戦略思考入門

未来を見据えた営業戦略の構築方法

他業種比較で得られた発見とは? 他業種の動向を比較することで、自分の業界における事業経済性の理解が深まりました。特に「返報性」という言葉については、以前は知らなかったものの、自分にも当てはまる心理状態であり、大きな発見でした。また、経済性が時代の流れによって絶えず変化することも学びました。 幅広い視野からの分析で見えた課題は? 自分の顧客やエリアに注目しがちですが、支店規模や全社規模といった幅広い視野での分析の必要性を感じました。特に、捨てるという技術についてはまだ足りないと感じています。今後は最短距離を常に意識し、何から取りかかるべきか、何をやらないべきかを明確にして活動していきたいです。 営業プランの見直しと今後の戦略は? 毎期ごとに半期の営業プランを作成していますが、ゴールを半年後に設定する短期的な営業プランに加え、中長期を見据えた場合にどのように実績のトレンドを変えていくか、そのために今期で何をする必要があるかを今後考慮していきたいと思います。

データ・アナリティクス入門

数字で読み解く成長の軌跡

定量分析の鍵は? サンクコスト、定量分析、MECE、ロジックツリーという手法について学びました。定量分析では、データのどこに注目し、どこを比較するかが重要であることが分かりました。特に、①インパクト、②ギャップ、③トレンド、④バラつき、⑤パターンの各視点からデータの意味合いを読み取ることに注力しました。 MECEの意味は? また、MECEに関しては「もれなく、ダブリなく」に分けるだけでなく、意味のある切り分け方が重要であることを理解しました。この考え方を基に、現状と理想のギャップを明確にし、具体的な行動につながる方向性をメンバーに示すことが求められると感じました。 課題解決の道は? さらに、現状の課題として、分析結果の共有時にメンバー間で理解のずれが生じたり、行動に直結しない点が挙げられます。なぜこのような分析が必要なのか、そこから得るべきものは何か、そして課題の解決につながる具体的な実施方法について、今後さらに明確にしていく必要があると感じました。

データ・アナリティクス入門

日常の比較で見つける学びの光

比較は本当に必要? 分析に取り組む際、まずは比較が基本であるということを改めて実感しました。今回の学習を通じて、日常的に行っていることでも、再確認する必要があると感じました。 目的をどう捉える? また、データ分析を行う際には、その目的を明確にすることが不可欠です。何を明らかにしたいのか、どのようなデータを使い、どう加工して分析するのかを事前に整理することで、分析の精度が向上します。 結果をグラフで見せる? さらに、得られた結果をどのようにグラフで表現するかも非常に重要です。グラフは視覚的に情報を伝える強力なツールであり、分析結果を見やすく、分かりやすくするためには適切なデザインや構成が求められます。 業績をグラフで解説? 会計データを取り扱う中で、毎月の業績報告においても、的確な分析が会社の問題点や改善点を浮き彫りにすると考えます。分析結果を見やすくグラフ化することで、その内容を具体的かつ説得力のある形で提案できる点が大きなメリットです。

データ・アナリティクス入門

仮説で描く未来の戦略図

仮説整理はどう進む? ビジネスフレームワーク(3C、4Pなど)を活用することで、なんとなくで仮説を立てるのではなく、複数の仮説をMECEに整理できるという認識が得られました。また、仮説には「結論の仮説」と「問題解決の仮説」の2種類があることを知り、仮説に対する考え方が大きく変わったと感じています。 課題解決は何を問う? マーケティング施策の企画段階では、まずお客様の課題が何であるかを明確にし、What、Where、Why、Howのプロセスに基づいた問題解決の仮説思考を用いることで、心に響く施策を考案したいと考えています。一方、振り返りの際には、施策の結果を踏まえた上で結論の仮説を用い、データを検証していくことが重要だと感じました。 計画実行はどう見る? 今年度の施策の振り返りと来年度の計画を進める時期にあたり、初めからデータを集計するのではなく、まず仮説を立て、その検証に必要なデータを収集・比較分析するアプローチを取り入れていきたいと思います。

マーケティング入門

徹底解剖!イノベーション成功の秘訣

新商品の成功要因は? 新商品を発売する際の成功要因として、イノベーションの普及要件に基づいた考察が非常に参考になりました。具体的には、従来のアイディアや技術と比べた「比較優位性」、生活への適合性、使い手にとっての「わかりやすさ」、試用できる「試用可能性」、そして採用状況が明らかになる「可視性」の5つのポイントが大切であると感じました。 差別化の罠に注意? また、初めは顧客のニーズから商品開発を進めるものの、競合が同じ商品を打ち出すことで、顧客視点が見失われる「差別化の罠」に注意が必要だと学びました。すべての人に受け入れられる商品を作ることが困難な現代では、限られたリソースを最大限に活かすためにも、セグメンテーションとターゲティングの手法が不可欠だという点にも納得しました。 戦略はどう練る? これらの学びをもとに、自社で展開する新サービスのプロモーション戦略や支援策を検討する際に、より具体的かつ効果的な施策を考えていければと感じています。

アカウンティング入門

BS/PLで解く!自社資金の見直し術

B/SとP/Lの関連性は? B/Sを読み解くことで、P/Lとの関連性や資産の使い道、必要な資金調達について理解が深まりました。特に、業種によってB/Sの内訳が大きく異なる点を学びました。これにより、各企業の状況に応じた資金の活用方法や調達方法について理解を深めることができました。 どのように資金を活用する? 自分の会社における資金の使い道や集め方を、B/SとP/Lの関連性を意識しながらしっかりと理解したいと思います。その上で、事業のお金の使い道にどのような問題があるのかを考えてみたいです。特に、過去の経年変化や他社との比較を通じて、自社の強みや弱みを知る手がかりにしたいです。 経年変化の確認方法は? まずは、過去3年程度の自社のB/SとP/Lの経年変化を確認してみます。傾向がつかめなければ、さらに遡って数字の変化点や傾向を探ります。そして、現時点での自社の経営戦略と照らし合わせながら、自分の業務の立ち位置を再確認したいと考えています。

データ・アナリティクス入門

日常に息づく比較分析の知恵

比較方法はどう選ぶ? 分析を行う際は、比較が重要であると学びました。たとえば、ある要素の効果を検証する場合、その要素がある場合とない場合を比べ、その他の条件をできるだけ一致させることが求められます。 目的は何で大切? また、データを分析する前に、何のために分析するのか目的を明確にすることが大切です。その目的に沿って必要なデータを収集し、目的に合わせて加工や分析を行い、得られた結果を言語化することで、ビジネス上の判断材料として活用できます。 今後どう実践する? 今回の学びが直ちに業務に活かせる場面は少ないかもしれません。しかし、問題解決の基本的な考え方を意識しながら業務に取り組むことで、今後の課題解決に役立てることができると感じています。 継続の秘訣は? さらに、何事も使わなければ忘れてしまうものです。業務にすぐに適用できなくても、日常生活の中で今回学んだ分析手法を実践し続けることで、着実にスキルを磨いていきたいと考えています。

データ・アナリティクス入門

キャンペーンを成功に導く効果検証術

キャンペーン効果をどう活かす? キャンペーンの効果検証に生かすことができると思います。これまで効果検証を次の施策や会社の計画に反映できていないことが課題でしたが、キャンペーンの結果を本講座の分析法で分析し、そこから見えてくる考察を基に新しい取り組みを提示したいと思います。 商品性の比較はなぜ必要? また、現在部署で新規事業の検討を行っております。その商品性の検討に際して、他社商品を比較することが必要です。分析を行うことで、商品性に取り込みたい要素や難しい要素を明らかにすることができると思います。 課題解決に向けた具体策は? これらの課題に対し、次のことを行っていきたいです。 - WEEK1で学んだ内容の共有 - 分析対象となるものの選定 - 比較対象のピックアップ WEEK1で学んだことは既にチームメンバーに共有しており、メンバー全員が納得した内容でしたので、今後も新たな気づきを共有し、実践の場で活用していきたいと思います。

「必要 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right