クリティカルシンキング入門

データ分析の新発見と発想転換の旅

データ分析の工夫は? 今週の講義では、多くの気づきがありました。まず、データ分析においては、単にデータを眺めるだけでなく、少し手を加えることが重要だということです。具体的には、販売戸数と単価の組み合わせで売上を構成する新しい項目を作成したり、数字を視覚化するためにグラフを使ったりすることです。これまでの自分には、そうした手間をかける習慣がなかったことに気づかされました。 分割方法はどうかな? データの分割方法についても新たな視点を得ました。従来は年齢別に10歳ごとで分けていましたが、大学生に焦点を当てた18歳~22歳の分割や、4歳ごとの分割法を知り、新鮮な驚きがありました。こうした視点の転換は、日常業務にも活かせると感じました。 分解の効果は? 博物館での演習を通じて、分解を重ねることで新たな洞察が得られることがわかりました。ただ満足するだけでなく、さらなる分解が重要だと認識しました。講師からも、迷ったらとにかく分けてみること、特徴的な結果が出なければそれは次のステップだという考え方を学び、大変共感しました。 MECEは本当に有効? 最後に、MECE(漏れなくダブりなく)の考え方について学びました。今後、業務で悩んだ際には、この考え方を基に問題を整理していきたいです。 来店客の傾向は? 店舗に来店するお客様を分析することで、今後の店舗運営に役立つアイデアが出てきそうです。現在、来客数が減少している問題があり、分析を通じてその原因を探ることが必要です。スタッフの協力を得ながら、効果的な施策を考えていこうと思います。 学びの実践方法は? 今回学んだ手法は、①手を動かす、②機械的に分けない、③複数の切り口を試す、④悩むくらいなら分ける、⑤失敗は次のステップ、⑥分けることで分かる、というステップで進めていくことが重要だと実感しました。

データ・アナリティクス入門

データが教えてくれた学びのヒント

代表値で全体像は? データをどのように加工して把握しやすくするかを学びました。まず、代表値を求めることで全体像をシンプルに掴む方法を理解しました。代表値としてよく使われる平均値は、データ全体の傾向を捉える上で便利ですが、ばらつきを反映しにくいという欠点があります。そのため、目的に応じて加重平均、幾何平均、中央値などの手法を使い分ける必要があると感じました。 偏りはどう捉える? また、データの偏りを把握するために標準偏差が有効であることを学びました。標準偏差は、複数のデータが平均値からどれほど離れているかを示し、ばらつきを具体的に表現する指標として役立ちます。 グラフと予測は? さらに、グラフ化されたデータにアプローチする方法も学習しました。グラフ上の特徴的な部分に着目することで、問題点を深堀りしやすくなるという点や、グラフを見る前に予測を立て、その予測と実際のデータを比較する方法が、分析の深化に効果的だと感じました。データ同士を比較し、仮説を立てることで、次に分析すべき方向性が明確になるのだと実感しました。 代表値の使い分けは? 代表値の選び方についても触れました。たとえば、年度ごとの収益を分析する際、単に平均の粗利額を示すのではなく、プロジェクトごとに異なる売上金額を加味して加重平均を採用することで、より適切な表現が可能になると考えました。また、ばらつきの表現に標準偏差を用いることについては、これまであまり意識していなかったため、今後は積極的に活用していきたいと感じました。 学びをどう活かす? 今回の学びを通じて、データを多角的に把握することの重要性を再認識しました。今後は、常に自分の予測と実際のデータとのギャップに注目し、過去のデータや他のプロジェクトのデータとも比較しながら、具体的な仮説を立てて深堀りを進めていきたいと思います。

戦略思考入門

捨てるからこそ見える未来

戦略の捨て方は? 今週は「戦略における捨てること」について学び、実践演習では営業先の売上に関する情報を用いてROIを算出し、優先度を下げるべき営業先の事例を分析しました。 苦手意識の理由は? 講義では、日本企業が捨てることに苦手意識を持っているという話があり、自社にもその傾向を感じると同時に、ファーストリテイリングや日立製作所のように、選択と集中を積極的に進めて収益性を高めている事例もあると理解しました。 資本コストの影響は? また、上場企業においては、資本コストを意識した経営が求められる中、捨てる選択がますます重要になるのではないかと考えるようになりました。 取引先の扱いは? 業務上、複数の取引先とやりとりする中で、要求が細かく、契約書以上の依頼をするクライアントが一定数存在するため、こうした顧客情報は社内で共有し、非積極顧客として管理していく必要があると感じています。 修正対応の基準は? 納品後の修正対応については、納品内容に問題がある場合は当然対応するものの、問題がない場合や細かい点に関しては、すべてを無条件に受け入れるのではなく、一定の姿勢を保つことも大切だと考えています。 顧客リスト整備は? そのため、積極顧客リストと非積極顧客リストを作成し、営業部門と連携して、非積極顧客の案件は基本的に受注しない方針を進めていきたいと思います。 CADはどう外注する? さらに、建設コンサルタント業界では3D CADの導入が進んでおり、現状、社内人員で作成しているものの、業務フローを鑑みると外注に依頼する方が現実的と考えます。今後は、社内で人材を育成するのではなく、3D CADを扱える外注先の開拓や、必要に応じて外部企業の買収などを通して、対応力の向上を目指していく必要があると感じました。

データ・アナリティクス入門

データ分析の要点と活用法を深堀りするコツ

Week6での気付きは? Week1から学んでいたことが、ようやくWeek6で腑に落ちた感じがしました。 仮説思考の重要性とは? ライブ事業では、ストーリーを立てて分析する方法を具体的に学びながら復習することができました。 よい分析のためには「仮説思考」が重要です。まず目的を明確にし、問いに対する仮説を立てます(例:打率ではなく失塁率が高い選手が原因ではないか)。次にデータを収集し、その仮説をデータで検証します。仮説がデータにより証明されなければ、新たな仮説を立て直します。 データ収集はどう進める? データ収集の手段としては、検索エンジンや公開データ、アンケートやABテストなどがあります。 分析を進める際の5つの視点として、以下の点が重要です: - インパクト:影響度の大きさ - ギャップ:何がどのように違うのか - トレンド:時間的な変化の傾向 - ばらつき:分布に隔たりがあるか - パターン:法則性があるか WEBマーケティング分析のポイント グラフ化のステップとしては、まず仮説やメッセージを明確にし、比較対象を決めて、適切なグラフを選びます。 WEBマーケティングの売上に繋がりやすい顧客の分析には、以下の点を考慮していきます: - 企業規模や購入製品群(リピート購入か、多種製品群を購入しているかなど) - 地域による差異 - 製品の月別の差異 - 顧客情報の獲得経路の有効性 これらをMECEに分解し、先入観を避けつつ仮説検証を進めます。 来月以降、少し余裕ができるので、上記の分析を進め、WEBサイトの改善を図ります。ロジックツリーの活用で細かく分解しつつも、Week6の講義にあったとおり、目的に必要な分析範囲を見極めたいと思います。また、メンバーに説得力のあるプロセスを踏み、説明することも重視したいと思います。

データ・アナリティクス入門

仮説力で見える未来のカタチ

仮説検討は効果的? フレームワークを使って仮説を検討する重要性を改めて実感しました。自分の視点だけで考えると、異なる仮説が実は同じ意味を持っていたり、抜け漏れや重複が生じ、MECE(漏れなく、ダブりなく)にならないことがあると感じました。また、業務では自社の既存データを中心に扱っており、外部のデータと比較する機会が少ない点にも気づきました。一般的なデータにも注意が必要で、信頼性が低かったり数値が大げさに見せられるケースもあるかもしれません。こうした状況だからこそ、学んでいる知識を活かし、有効なデータと信頼できる情報源を見極める必要があると思いました。 動画から何を学ぶ? 先週のグループワーク後に視聴した関連動画で紹介されたさまざまなグラフや分析手法も非常に参考になりました。自分がこれまでなんとなく実施していた方法が当てはまる部分もあれば、これまで注目していなかった視点に気付くこともあり、改めて復習する意欲が湧きました。 実務で新発見は? 実務では、指示通りに同じグラフを作成することが多い中、自分自身でフレームワークを活用して仮説を立て調査することで、新たな発見につながる可能性を感じています。現在の職場では、これまでにない未来的な取り組みが多く、自社の過去のデータだけでは捉えきれない視点が必要だと再認識しました。大きな歴史的流れに沿った視点も、今後の改善に大いに役立つと考えています。 改善策の検証は? まずは、フレームワークを用いて「どの部分が改善され、会社の売上に貢献できるか」という仮説を立て、データの収集と検証に取り組みたいと思います。また、データだけに頼らず、職場の改善点や取り組みについても多角的な視点を持って検証することで、会社全体の業績向上だけでなく、自分自身の成長につながる発見があると期待しています。

クリティカルシンキング入門

分析の切り口を変えて、新たな発見を!

データ分析で解像度を高めるには? データは受け取ったままではなく、一手間加えることで解像度が上がります。絶対値だけでなく、相対値でも数字を出して比率を確認し、数字はグラフ化することで視覚的に課題を見つけやすくなります。また、取り扱う情報が売り手側か顧客側かで分析の視点が変わることを認識しておくことが重要です。 偏りを防ぐためにはどうする? 基本的に売り手側の情報から分解することが多かったため、偏った視点だということを意識しなければなりません。切り口は時間、人、手段など様々な角度から分解し、可能な限りMECE(Mutually Exclusive, Collectively Exhaustive)で分解することで、ダブりなくモレなく網羅的に分析が可能になります。 新たな課題を発見する方法は? 事業部の売上を分解する機会がよくありますが、売り手側の情報に偏らないように注意が必要です。慣れた分解手法を使うことが多いため、異なる視点や切り口、深掘りをすることで、今まで見えていなかった課題を見つけることができるでしょう。 分解のブレを防ぐには? 事業部の売上や部署の売上、メニュー毎の売上、顧客毎の売上など、分解できそうな要素は多くありますが、まず最初に全体の定義を決めることで分解のブレを防ぎ、有効に活用していくことが大切です。毎週や毎月のように分析を行う機会があるため、週報や月報でこれまでと違った切り口で分解を試みてみようと思いました。 異なる切り口での分析の効果は? これまで「課題はこれだ」と決めつけていた部分も多かったため、本当にそうか疑い、別の切り口で分解することで新たな課題を特定できると感じています。早速今回の週報から分析と分解を活用し、全体の定義を決め、MECEで考えるよう心がけ、ダブりやモレのない進行を目指します。

クリティカルシンキング入門

スライドで差をつける技術とは?

どう伝えるのが良い? 同じメッセージでも、スライドでの表現方法によって、内容が読まれるかどうかが大きく変わることを改めて感じました。伝えたいことが決まったら、文字の強調や色の使い方、適切なグラフの選択が重要です。特に強調表現(太字や斜線)や、文字の色使い(青=肯定的、赤=注意やネガティブ)を工夫し、誰が見ても違和感なく理解できるよう心がけるべきです。 何を見せれば正解? スライドを丁寧に作成することは、根拠となる情報を一目で理解させるために欠かせません。例えば、売上の60%以上を占めることを伝える際に売上構成比を見せないのは問題です。グラフを作成する際には、メッセージのどの部分を補強するのかを意識する必要があります。 本当に伝わってる? ビジネスライティングは経験があればできると思いがちですが、実際にはできていない人も多いです。自身のスキルを見直し、読まれるスライドを作ることを心がけたいと思います。クリティカルシンキングで検討した内容をスライドに適切に反映できないと意味がありません。ビジネスライティングとクリティカルシンキングは関連があり、重要です。 どう説明するの? 自身のプロジェクトを上長や他部署に説明する際、スライド作成が必要です。今回学んだことを活かし、メッセージと根拠が一致しているかを確認しながら、スライド作成に取り組みます。また、会社にあるスライドに関する指針と今回の学びを融合させることで、効果的なスライドを作成したいです。作成後は、学んだことと会社の指針の二つの視点でチェックを行います。 見た目は大丈夫? 文字の色や強調表現については日頃から意識しているため、スライド作成時には必ず実施し、最後に確認を行います。学んだポイントを反映したチェック表を作ることで、適切にチェックできるようにする考えです。

マーケティング入門

売上向上のためのターゲット戦略

誰が商品を買うべきか? 商品を成功に導くためには、誰に売るかを明確にすることが不可欠です。どんなに良い物でも、適切なターゲットを定めていないと、その魅力を十分に伝えることができず、売上につながりません。ターゲットに合わせたプロモーション戦略を作成することで、商品の訴求力を高め、顧客にその価値を感じてもらうことが可能です。 既存製品に新しい価値を? 自社製品の強みを組み合わせることで、既存製品であっても新しい価値を発見し、差別化を図ることが可能です。具体的な利用場面をイメージし、顧客がそこに価値を見出す手助けをすることが重要になります。 また、ターゲットと提供する価値がしっかりと結びつくプロモーション施策が必要です。市場の顧客に商品の価値を認識してもらえなければ、大ヒット商品につながりません。 競合との差別化ポイントは? ポジショニングマップを用いて、競合との差別化を図るポイントを見つけ出すことも重要な作業です。自社の強みを2つの軸に絞り込み、市場開拓を進め、ターゲットを明確にすることで、経営資源を有効に活用し、費用対効果を高めることが必要です。 新規事業、特にBPO業界に参入する際には、まず自社のリソースを活用し、顧客に価値を感じてもらえる分野を特定することが求められます。その後、特定した価値に魅力を感じる市場やターゲットを定め、選択と集中を行います。そして、訴求ポイントを強化するために必要なスキルの獲得や品質の向上を図ります。 ターゲット設定の基準は? 最後に、セグメンテーションの切口を探し、ターゲティングの評価基準である6Rを考慮しながらターゲットを定めることが肝心です。さらに、競合と比較しながらポジショニングマップを利用して、自社の差別化ポイントを確認する習慣を持つことが、成功に導くための重要な戦略です。

戦略思考入門

意思決定の極意:選ぶ勇気と捨てる技

感情とデータ、どちら? ビジネスにおける意思決定では、「捨てる(選択する)」という判断が必要なことがあります。限られた時間や資源の中で業績に貢献するための選択を行う際、感情的な理由に基づく判断は避けるべきです。「創業時から続けてきたから」「やめると処理が面倒だから」などの感情論を優先すると、業務が増え続け、効率が低下します。捨てるという判断には、定量データを参考にして指標を設定することが重要です。 定量と定性、どう? 中には「顧客とのつながり」や「担当者との関係性」などを指標にしている場面もあります。確かに、定量的なデータに基づく判断は重要です。しかし、何を具体的に取捨選択するかを決める際には、定性的な考え方も柔軟に取り入れることが有効だと感じました。すべてを定性的な考えだけで進めるのではなく、一定の根拠を持って選択肢を絞り込みつつ、関係者からの意見も取り入れながら精査することが大切だと思います。 施策の見直しは? 私たちのチームで行っている施策には、利益に対する投資対効果が出ていないものも少なくありません。人員が減り、残った社員への負担が大きくなりつつあります。中長期的な効果を見据えて進めている施策もありますが、現状では工数が増え、残業の増加やクオリティの低下が問題となっています。今回学んだ「捨てる」という概念を活用し、進行中の施策を棚卸しし、本当に今行うべきかを整理し、優先順位を再考したいと思います。 効果の測定はどう? まずは施策が生み出している利益や売上について数値的データを集めることから始めます。そして、実際にかかっている工数を把握し、投資対効果を測定します。短期的な成果を目的とする施策と中長期的な成果を目的とする施策にそれぞれ指標を設定し、優先順位を明確にし、自分のタスクに落とし込んでいくつもりです。

アカウンティング入門

P/LやB/Sが身近に!苦手意識が和らいだ瞬間

P/LやB/Sを理解するための第一歩とは? P/LやB/Sについてこれまで触れる機会がほとんどなかったため、これらの用語は難解なものでしかなく、強い苦手意識を持っていました。しかし、演習を通じて実際のP/LやB/Sを見てみると、学んだ用語がそのまま表に反映されており、その意味も理解できました。この経験を通して、以前よりP/LやB/Sを身近に感じるようになり、苦手意識も和らぎました。未知の世界に少しでも触れることができたことに、素直に喜びを感じています。 P/LやB/Sを読む機会をどう増やす? 今後は、気になる企業のP/LやB/Sを読む機会を積極的に設け、世の中の資金の流れや仕組みを理解したいと思います。また、新規事業提案の際には、今回学んだ資金の流れを意識して提案書を作成するつもりです。グループワークで新規事業の際には予測財務諸表が良いとのアドバイスも受けましたが、9月末までに提案をまとめる必要があり、現時点ではコンセプトや価格、原価、戦略が定まっていないため、予測財務諸表の作成は困難でした。今後、話が進んだ際には関係する複数部署に協力を仰ぎ、予測財務諸表を作り、しっかりと資金面で先を見据えた提案を行う予定です。 新規事業に必要な数字の意識とは? 予測財務諸表の作成を念頭に置きながら、まずは他社のP/LやB/Sをたくさん見ることから始めようと思います。しかし、それだけではなく、いくらで販売するのか、売上見込みはどの程度か、原価はいくらに設定するのか、販管費はどの程度必要か、利益はどれくらい見込めるか、固定資産として必要なものは何か、負債はどのように変化していくか、必要経費はどこから調達するかなど、具体的な数字を意識しながら計画を立てていくつもりです。まずは、誰にどのような商品やサービスを提供するのかを明確にします。

データ・アナリティクス入門

仮説が織りなす成長のヒント

仮説って何だろう? ビジネス現場における仮説とは、ある論点に対する仮の答えのことです。仮説は「結論の仮説」と「問題解決の仮説」に大別され、時間軸(過去、現在、未来)によりその内容が変化します。問題解決の仮説は課題に取り組む際の原因究明に用いられ、一方、結論の仮説は新規事業などに対する仮の答えとして位置づけられます。 プロセスの流れは? 問題解決のプロセスは4つのステップで整理できます。まず、Whatで問題が何であり、どの程度の問題かを把握します。次にWhereで問題の所在を明らかにし、Whyで問題が発生している原因を追究します。最後にHowでどのような対策が有効かを検討します。複数の仮説を同時に立て、各々の仮説が網羅性を持つよう確認することで、行動のスピードや精度の向上が期待できます。 仮説の活用法は? 私自身はこれまで、Webサイトの行動履歴や売上、KPIなどのデータ分析において、一つの仮説に頼る傾向がありました。今後は最低3つ以上の仮説を立て、上記の4ステップ(What、Where、Why、How)に沿って分析を深め、効率的な問題解決を目指していきたいと考えています。原因追及だけでなく、具体的な対策案を提案できる分析力の向上が目標です。 具体策は何だろう? そのため、以下の取り組みを徹底していきます。まず、仮説立案を強化し、複数の仮説を積極的に検討します。次に、問題解決の4ステップに沿って、各ステップの内容を明確に記録し、問題の全体像を把握します。また、データ分析に必要な技術や知識の学習を継続し、プログラムや統計学などの講座を受講することでスキルアップを図ります。最後に、チーム内でのコミュニケーションを強化し、情報共有や定期的なレビューを通して、原因追及から対策提案まで一貫したアプローチを実現します。

クリティカルシンキング入門

切り口変えれば未来が拓ける

事象を分解する意味は? ある事象を理解するためには、まずその事象を細かく分解してみることが有用であると感じました。一つの視点だけでは捉えきれないため、複数の切り口から分解することで、より深い理解へとつながります。また、現在の切り口に安住せず、他の可能性を常に問い直す姿勢が、新たな発見に結びつくと考えています。ここで、MECE(漏れなく、ダブりなく)という原則を徹底することの重要性が改めて意識されます。もし切り口に漏れや重複があれば、事象を正確に捉えることが難しくなってしまうからです。 財務状況はどう分析する? このアプローチは、例えば顧客の財務状況を分析する際にも非常に参考になると思います。財務諸表であるB/S、P/L、C/Fを、複数の視点からチェックすることで、顧客の財務状態をより具体的に理解することが可能になります。また、顧客理解を深めるには、事業内容や流通構造、業界の動向、さらには競合との比較も欠かせません。それぞれの項目について、どの要素が利益率低下に影響しているのか、例えば原価率の高さや売上の低迷、その背景にあるコスト増加などを詳細に分析する必要があります。 未来策はどう見つける? さらに、物事を分解する手法は、現状の課題把握だけでなく、将来の解決策を検討する際にも役立つと実感しています。今後は、この分解の手法をより一層活用し、現在の理解を深めた上で、効果的な解決策を模索していきたいと思います。 具体的な取り組みとしては、5月中に少なくとも1つ、理想は2つ以上の業界について、業界に属する上場企業のIR資料や関連書籍を参考にしながら業界分析を行う予定です。その際、業界を単一の角度ではなく、複数の切り口で分析すること、そしてMECEの原則を意識して、学びを実践に結びつける機会にしたいと考えています。

「必要 × 売上」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right