データ・アナリティクス入門

比較で見える、成長の瞬間

分析の基本は? 分析の本質は「比較」にあります。まず、分析は①プロセス、②視点、③アプローチの3つの軸で進めることが基本です。プロセスは大きく4つのSTEPに分かれます。まず目的や問いを明確にし、その問いに対する仮説を立てます。次に、既にあるデータや新たに収集する情報(見る、聞く、行う)を活用してデータを集め、最後に分析によって仮説やストーリーを検証していきます。データ収集時は、サンプリングバイアスや設問設計の影響に注意し、適切なA/Bテストの実施も視野に入れます。 重要視点は何? 次に、分析を行う際に重要な視点は5点あります。まず、インパクト:どの程度の影響があるかを把握し、優先順位をつけること。次に、ギャップ:比較対象や軸を明確にし、どの部分が異なるのかを確認すること。さらに、トレンド:時間の経過による変化の傾向を把握し、異常な部分を見つけること。加えて、ばらつき:全体の分布がどれだけ偏っているかを平均値や中央値などで見ること。そしてパターン:全体や変曲点から法則性を読み取ることが大切です。 グラフの工夫は? また、アプローチとしては、グラフや数字、数式を用いてデータを視覚化する手順があります。まず仮説と伝えたいメッセージ、次に比較対象を明確にし、どのグラフを使用するかを検討します。一般的な項目の比較では横棒グラフやウォーターフォールチャート、時系列の変化を示す場合は折れ線グラフや縦棒グラフ、構成や分布を表すにはヒストグラムや円グラフ、相関関係を示すには散布図が有効です。横棒グラフは特に多用されますが、加工に手間をかけることでより分かりやすくなります。 日常の見直しは? また、日常の業務や振り返り、目標設定・計画立案において、MECEや層別分解といった手法を使いながら、固定観念や偏った思考を見直し、仮説思考を鍛えることも重視しています。社内では、数字や思い付きだけで次を考えるのではなく、定量・定性データ分析の手法を共有し、分析は「比較」に基づくという前提と、意思決定を目的とするという考えを全員で理解しています。この目線合わせのもと、各種フレームワーク(たとえば3C、クロスSWOT、セグメンテーション/ターゲティング/ポジショニング、4Pなど)を取り入れながら、What/Where/Why/Howのステップを踏んで分かりやすいビジュアル資料を作成し、あるべき姿を説得力ある形で提案できるよう学び続けています。

データ・アナリティクス入門

データ分析の成功術を学ぶ旅

目的はどう設定する? データ分析を効果的に行うためには、いくつかの重要なポイントを押さえる必要があります。まず、データ分析に取り掛かる前に、目的や仮説を具体的に設定しておくことが重要です。これにより、分析がスムーズに進むだけでなく、目標に対して効果的な手法を選ぶための指針となります。 切り口はどう選ぶ? 次に、分析のステップとして、問題解決のプロセスには「what, where, why, how」といった段階を経ることが挙げられます。特に、データをどの切り口で見るかを判断する際は、その切り口が解決に役立つかどうかや、データが入手可能かどうかを考慮しなければなりません。また、平均値を用いる際には、データのばらつきも確認することが不可欠です。代表値を選ぶ場合も、元データの傾向を理解しておくことが必要です。 数値の意味はどう見る? 実数と率を確認することも重要です。たとえ割合が大きく見えたとしても、実数が少なければ優先度は高くないかもしれません。分析はただ闇雲に行うのではなく、数字の根拠に基づいたストーリーを描くことが求められます。そのためには、データの傾向をつかみ、特に見るべきポイントを明確にする必要があります。データは伝えたいことが分かりやすい形に加工することが望ましいです。 解決策はどう選ぶ? 解決策を選定する際には、得た知見をもとに複数の選択肢を洗い出し、判断基準を持って選定することが求められます。例えば、販促施策の振り返りでは、単に目標に対する数値を比較するのではなく、何が成功したのか、どんな改善が必要か、そしてその理由を深掘りすることが重要です。 SNS戦略は見直す? さらに、自社のSNS運営方針の再検討においては、現状の方針が適切かを評価し、必要であれば異なる方向性を検討することも考慮すべきです。インプレッションやコンバージョン率などのデータを参考にすることで、同じ目標に対しても新しいアプローチを見つけることが可能です。 検証はどのように進む? 仮説を立てた後、その検証を進める際には、結論に飛びつかず、複数の視点から考慮することが重要です。これにより、示唆の幅を広げることができ、問題解決に向けたステップを適切に踏むことができます。分析を行う際に少しでも学んだことを次に活かし、適切な場面で適切な手法を用いることが、成功の鍵となります。

データ・アナリティクス入門

数字から見える問題の本質と解決策への道程

分析の本質とは何か? Week1のポイントを復習しました。分析の本質は比較であり、比較する際に注意すべき点は、比較対象を揃えることです。問題解決のプロセスには、What、Where、Why、Howの4つがあります。 問題解決の4ステップとは? まずWhatでは、何が問題なのかを定めます。次にWhereで、問題がどこにあるのかを特定し、あるべき姿と現状のギャップを数字を用いて比較します。この段階ではフレームワークが有効です。Whyでは、なぜ問題が発生しているのかを探ります。そしてHowでは、どのように対処するかを考えますが、すぐにHowに飛びつかないことが重要です。 データ分析の注意点は? さらに、単純な平均値に惑わされず、データのばらつきに留意することが必要です。代表値として平均値、中央値、最頻値をチェックし、ヒストグラムを用いてデータにばらつきがないかを確認します。 仮説の検証方法は? 仮説を立て、その仮説が成り立つかを検証するためにデータを集めます。問題の原因を明らかにするためには、プロセスに分解する方法が有効です。解決策を見つける際には、複数の選択肢を洗い出し、それぞれの根拠をもとに絞り込みます。 チームでのデータ分析をどう進める? こうした復習を行った上で、実践問題に取り組んだところ、数値を見ることや問題の箇所を特定することがかなりスムーズになったと感じました。しかし、複数の回答を絞り出そうとすると視野が狭くなることがありました。データ分析を行う上では、一人で考えるだけでなく、チームメンバーの多角的な視点が必要であると感じました。そのためには、チームメンバーにもデータ分析の考え方を共有し、共通のプロセスを踏むことが必要だと感じました。 お客さまアンケートの分析は? 現在、上半期の施策などの振り返りを行っています。その中で、お客さまアンケートの分析業務が現在のメインの仕事となっています。この分析を通じて、お客さまからの評価のボトルネックとなっている部分を発見し、対策を講じる必要があります。 問題発見と仮説の共有方法は? まずは、問題がどこにあるのかを明らかにするために、関連するデータをビジネスプロセスごとに並べてチーム全員で意見交換を行います。問題の所在が見えてきたら、その原因について仮説を立て、チームメンバーでその仮説を共通認識にします。

クリティカルシンキング入門

分解で拓く学びのヒント

分解方法はどう選ぶ? 分解して考える方法について学ぶ中で、層別分解(部分ごとや性年代別など)、変数分解(売上=単価×数量など)、プロセスによる分解というさまざまな切り口があることを再認識しました。実際に経験を重ねる中、分解することで新しい事実が見えてくると感じる一方、切り口や分け方によって事実の見え方が変わるため、十分な確認が必要であると実感しました。特に、常に「MECE」の概念を意識して切り口を選び、数字の漏れや重複がないかを確認することが大切だと思います。 ロジックは何が新鮮? ロジックツリーに関する学習では、MECEの切り口を組み合わせることで、全体像から個別の要素に至るまで論理的に整理できる点が非常に新鮮でした。動画での解説を通して、この考え方は便利だと感じた一方、実際に自分で応用しながら考えると難しさもありました。しかし、学習を進めるうちに、重要なポイントや具体例を通じて、影響を与えうる要素に対して仮説を立て、インパクトの大きい要因を組み合わせて考察する方法を習得できました。 実績分析のコツは? 得意先となる食品スーパーなどの実績分析においては、全体実績から店舗別やカテゴリー別に分解し、どの要因が結果に影響を及ぼしているのかを的確に抽出するためにロジックツリーの活用が効果的だと感じました。 仕入分析は何重視? また、仕入先商品の分析においては、商品の供給が最終的に販売店や消費者に届き、どのように売れているのかを詳細に検証する際にも、分解する考え方が役立つと考えます。表面的な数字だけでなく、どのような顧客層にどの時間帯や曜日に支持されているのかを把握することで、提案方法や販売店へのアプローチがより具体的になると感じました。 自社提案の秘訣は? 自社提案および実績の分析では、取り扱う商品が複数に及ぶため、単品での販売ではなく「商品群」としての提案が求められることから、売上という表面的な数字だけでなく、分解方法を駆使して細かい部分まで検証・提案に活かしていく必要があると認識しました。 数字確認はどうする? 日常的に数字の確認を行うため、基本の考え方を忘れないようにする目的で、手帳と勉強ノートに「分解方法」「MECE」「ロジックツリー」の内容や重要なポイントをメモしています。これにより、目に触れる機会を増やし、反射的に活用できるように心がけています。

リーダーシップ・キャリアビジョン入門

評価面談が拓く新たな一歩

評価面談、どう伝える? 今週のライブ授業では、「評価面談」をテーマにしたロールプレイに参加しました。シナリオは、評価者が十分な事前情報を持たずに部下へ悪い評価を伝えるというもので、受講者はそれぞれ評価者役と被評価者役を演じました。私は被評価者役を担当しました。 評価者の選択理由は? 評価者役を選んだ理由は、自分の観察力を活かせると感じた一方で、評価者役に対する自信が持てなかったためです。 印象に残る対応とは? ロールプレイ中に印象深かったのは、評価者役の方の対応です。まず、事実に基づいて評価内容を説明し、感情や主観に左右されずに納得感を伝えていた点が印象的でした。次に、会話の冒頭から柔らかなトーンで接し、相手の意見や感情を丁寧に受け止めることで、防御的にならずにスムーズな対話が成立した点が学びとなりました。さらに、改善点を明確に示しながら、次期への期待やサポートの意志を伝えることで、面談が前向きな雰囲気で締めくくられたことも大きな気づきでした。 苦手意識、どう克服? この演習を通じ、自分は評価者役への苦手意識があることに気づきました。今後は、業績評価やフィードバック面談、クレーム対応、さらには後輩や中堅スタッフとのキャリア面談など、様々なシーンで「事実に基づき、共感をもって伝え、未来への展望を示す」という視点を意識して実践していきたいと考えています。 具体事例、何が必要? 例えば、業績評価面談では、単に「数字が足りない」と言うのではなく、何がどう足りなかったか具体的な事実を示し、本人の努めに寄り添いつつ次への提案をすることが大切です。クレーム対応においても、感情論に陥らず現状を客観的に伝え、相手の立場に立ったアプローチをとることで、スムーズな対応が図れると感じました。また、後輩や中堅スタッフとの面談では、努力を認めながら今後のキャリアや具体的な成長の方向性を話し合うことで、モチベーションの向上にもつながると考えています。 成長環境の仕組みとは? さらに、面談の取り組みを具体的に進めるため、月単位や四半期単位での振り返りと未来志向の対話、週単位の軽い進捗確認、そしてフィードバック内容の「見える化」を実施する計画です。このような仕組みを導入することで、スタッフ自身が自身の成長を実感できる環境作りに貢献していきたいと思います。

アカウンティング入門

視点変えると経営が見える!

魚屋の多様性ってどう? ライブ授業でのグループワークでは、「魚屋」という業態でも、扱う魚の種類、販売方法、さらには店舗運営の形態によって、必要な準備や資格、仕入れの方法が大きく異なることに気づきました。事業活動の形態が変われば、揃えるべき物や意識すべき数値も違ってくるため、視点、視座、視野を意識して考える重要性を実感しました。 3視点をどう捉える? 私は現在、人事採用や人材開発、労務に携わるポジションで働いています。今回、3つの観点―「視点」「視座」「視野」―から、事業活動にどう活かすかを考えてみました。 現場での視点は? まず、「視点」については、現場レベルで目の前の事象に注目し、売上や労働生産性、スタッフの稼働率など具体的な数字に焦点を当てることが重要だと思いました。これにより、現状や課題が見える化され、次期の採用においてどのような人材を求めるべきか、具体的な判断基準を導き出すことができると感じました。 経営の視座はどう? 次に「視座」ですが、マネジメントの立場から経営全体を俯瞰して、営業利益率や限界利益率、損益分岐点などの経営指標を確認することで、事業の収益・コスト構造を理解できます。こうした視点を持つことで、今後の経営方針や戦略的な意思決定に役立てることができると考えました。 市場の視野は何? そして「視野」については、外部環境や将来を見据え、市場規模や成長率、競合シェア、顧客生涯価値、新規顧客比率などのデータに基づいて、市場動向や顧客ニーズの変化を把握することが求められます。これにより、長期的な戦略や組織づくりに役立つ判断材料が得られると考えました。 3視点の統合は? これら3つの観点を組み合わせることで、数字から現場の動き、構造、そして未来の判断材料を導き出す整理ができたと感じています。 経営体験にワクワク? また、グループワークを通じて、経営者の立場に立って会社運営の疑似体験ができるアカウンティングの授業に大きな魅力を感じました。資金調達や設備投資、人員採用、研究開発、リスクマネジメントなど、実際の経営で必要とされる意思決定のプロセスを学べる点は、売上や利益の仕組み、コストや利益の構造を体系的に理解しながら戦略的な経営判断力と分析スキルを養う大きな機会だと感じ、非常にワクワクしました。

データ・アナリティクス入門

データで掴む!プロダクト成長の鍵

定量分析の重要性は? 目的を明確に持つことや分析が本質的に比較であることを改めて理解し、以下の観点で新たな気づきを得ました。まず、定量分析の重要性です。適切な比較を行うためには、目の前の事象やデータだけでなく、「Aがない場合」といった事象の背景も考慮に入れ、比較対象を慎重に選定する必要があります。また、仮説を立てることで分析の精度を上げることができると感じました。 アプリ戦略と仮説の関係 現在、私はアプリのプロダクトマネージャーとして、プロダクト企画や戦略立案を担当しています。また、自社事業でアプリやプロダクトを使って事業成長戦略を描くというミッションを追っています。市場データや競合比較、ユーザーの売上データ等を用いて仮説を立て、精度の高い分析を目指しています。この手法は仮説の精度を向上させるための手段となり得ると思います。 ユーザーのペインとは? 分析が役立つと考えられる場面は以下の通りです。まず、ユーザーのペインがどのような数字に表れているかについてです。特に、弊社のヘルスケアアプリにおいて、ユーザー記録データの推移と一般的な健康データを比較し、特定のセグメントにおけるペインを特定できる可能性があります。また、国内外の市場比較から次世代市場の動きや外資企業の動向予測が可能になるとも考えています。 市場分析に必要なステップ 市場分析においては、目的の言語化が重要です。市場分析は主に「自社プロダクトの市場成長性と方向性決定のため」「自社事業成長戦略のポジショニング決定のため」の二つの観点を想定しています。目的ごとに仮説を立て、分析軸を決めることが必要です。具体的には分析目的をMECEで言語化し、優先順位を付けて最上位から着手します。何をどのように比較するか、仮説が本質的な目的から外れていないかを確認し、ゴールまでの計画を立てます。 データ分析で見える強みと弱み 自社プロダクトの分析には、「あるべき姿」と現状のギャップを言語化し、そのプロセスとしてデータ分析を活用します。市場ポジションの分析では、自社プロダクトの利用状況推移と同セグメントのアプリの一般的な状況を比較し、強みや弱みを特定します。また、ユーザーのペインを見つけるためにデータ分析を行い、アンケート結果やユーザーインタビュー結果を再評価し、インサイトを見出します。

データ・アナリティクス入門

キャンペーン成功の秘密、数字から

施策の視点は何? まず、Product、Price、Place、Promotionの4つの視点で施策を考察することで、学生における時間帯、価格、訴求チャネルのミスマッチという論点が整理しやすくなります。この手法は、自部門での施策レビューでも有効に活用されています。 広告評価はどう? 次に、広告メディアの選定では、「費用 ÷ 表示回数」という単純な指標を用いて、CPM換算で最適な媒体を選びました。これにより、感覚ではなくデータに基づいて判断する重要性を再確認することができました。 離脱原因は何? また、SNS広告管理画面の年齢属性データやUTM付きの流入計測、学内アンケートなど複数の手法を組み合わせることで、認知から興味、そして来校までの各段階で、どのタイミングで学生が離脱しているのかを具体的に特定できる仕組みが整えられています。 各要素のギャップは? 新規キャンペーンを企画する際には、Product(訴求内容)、Price(学割の有無)、Place(曜日・時間帯)、Promotion(SNSや学内媒体)の4象限マトリクスを必ず作成し、意思決定会議で各要素間のギャップを洗い出すルーチンを実施しています。 ファネルの進捗は? さらに、UTMパラメータを用いて大学生セグメントの流入を追跡し、表示、クリック、資料請求、来校の各ファネル段階での歩留まりを計測しています。歩留まりが低い段階に絞ってクリエイティブのABテストを回すことで、改善に必要なリソースを効率的に投入しています。 損益突破の条件は? また、価格施策においては、固定費と変動費の合計を目標生徒数で割るという式を参考に、学割導入によって必要な生徒数がどれだけ増加すれば損益分岐点を超えるかをシミュレーションしました。テスト導入後は、割引適用者のライフタイムバリュー(LTV)を計測し、キャンペーンの継続を判断しています。 スケジュールは如何? 施策の実施スケジュールとしては、初月にKPI分布の可視化テンプレート構築、2月目に要因分解ダッシュボードとアラート実装、3月目に大学生向けSNS広告のABテスト、4月目に学割と夜間枠の検証、5月目に成果共有会を開催し、6月目に効果を総括して次期OKRを設定するという計画です。これら全てを半年以内で実施する予定です。

データ・アナリティクス入門

数字が語る!原因分析のコツ

原因分析のポイントは? 「why:原因を分析」という問題解決のステップについて学び、実際の業務に活用するためのヒントを得ることができました。原因分析では、問題がなぜ発生したのかデータを基に追及し、原因が特定できた後に解決策を検討するという流れを確認しました。 プロセス分解の極意は? この授業で得た学びは主に2点あります。まずは、データをプロセスに分けて考える方法です。課題では、ウェブサイトの広告表示から体験レッスンへの申込に至る一連のプロセス(広告表示→広告クリック→申込)の各段階のデータを比較し、同じ経路を辿った中でどこで数値が落ちているかを検証しました。比較する際は、各プロセスの分母が異なるため、率で示す点が重要です。率が低いプロセスに問題があると考え、具体的な原因を探る有効な手法だと実感しました。この方法により、どこから改善に取り組めばよいのかが明確になり、必要なデータの選定も容易になると感じました。 原因思考の広がりは? 次に、原因を考える際は思考の幅を広げる必要があると学びました。フレームワークの一つとして、対概念という視点を活用する方法があります。たとえば、「自社の戦略に原因がある」と「自社の戦略以外の要素に問題がある」という二つの視点から原因を考えることで、一方向への固執を避けることができます。この手法は、原因の決め打ちを防止するのに非常に有効だと感じました。 遅延の要因は? 実際の業務で、業務の遅れが他部署に影響を与えている場合、まずはその業務を複数のプロセスに分解し、どの段階でボトルネックが発生しているのか、数字を元に比較することが有効だと考えます。原因追求においては、MECEの考え方も必要不可欠です。さらに、原因に関わる要素が明らかになったら、それ以外の可能性も併せて検討することで、一面的な見方に陥らずに対策を練ることができると実感しました。 学びをどう今後活かす? この学びからは、事象には必ずプロセスが存在し、分解して比較することで原因を特定できること、そしてよい事例についてもプロセスの整理が応用可能であることを改めて確認しました。今後は、問題だけでなく成功事例にもプロセスの視点からアプローチし、より幅広い視野で原因と対策を考えられるよう努めていきたいと思います。

データ・アナリティクス入門

データ活用で未来を切り拓く鍵

目的を明確にする重要性は? 目的を明確にすることと、正しい比較を行うことは非常に重要です。動画の例では、提示された数字をそのまま信じてしまう場面がありましたが、実際のビジネスシーンでも同様の例は多いと感じます。そもそも、その数字は何のために存在するのか?どのような基準で比較しているのか?比較の手法や数字の計算、抽出方法は正しいのか?データの精度や信頼性も重要です。AIの助言を受けて、身近な実例として新聞のチラシやテレビショッピングに出る数字を見て、何を示しているのか粘り強く理解していきたいと思います。例えば、「当社比」とは一体何を指しているのか?私の両親もそのまま鵜呑みにしているようなので、注意したいところです。 戦略経理とは何か? 経理に関しては、記帳や財務諸表作成がAIや外注で可能になると考えています。ただ、仕訳を行い記帳している際に「不思議だ」と思う点があり、そこを深堀りすることで経費や売上を分析し、会社全体が利用できるデータにすることができるのではないかと考えています。「戦略総務」や「戦略人事」という言葉を聞いたことがありますが、「戦略経理」という考え方もあって良いのではないかと感じます。 データ・ドリブン経営をどう進める? 意思決定にはデータの利用が不可欠です。データ・ドリブン経営という言葉が以前からありますが、そもそもデータに基づかない経営が存在するかという疑問が湧きました。実際の現場では感覚や感情に基づく経営が主流でしたが、私が関与する場面ではデータに基づいた意思決定を推進していきたいです。 仕事の目的を再確認する重要性 業務全般において、目的を明確にすることが重要です。これまでの仕事の中で、議事録作成などの業務において何のために行うのかという明確な目的がなかったため、非効率的となっていました。しかし、目的を明確にすることで効率的に正しい結果を得られるようになることを意識したいと思います。 転職活動で心掛けることは? 現在、転職活動中で新しい職場を探している中、今後の行動指針として、意思決定に際しては必ず数字の裏付けを吟味すること、目的の明確化を徹底することを心掛けたいです。また、以前に読んだ本や少しかじった統計検定の内容と重なるところが多いことから、統計学を一度学び直したいと考えています。

データ・アナリティクス入門

なぜ?が未来を変える学び

なぜ問題は起こる? まず、問題が発生した際にすぐ解決策(HOW)を考えるのではなく、「なぜこの問題が起きたのか(WHY)」に立ち返る姿勢が大切だと学びました。たとえば、ある教育機関のケースでは、一見複数の悪い数字が散見されたものの、詳しく分解すると根本原因が一つに絞れるという発見がありました。表面的な現象だけでは的確な対策が打てないため、まず原因の深掘りが必要だと痛感しました。 ロジックで整理? また、ロジックツリーやMECEといったフレームワークを活用することで、論点整理に漏れや重複がなくなり、複雑な課題もシンプルな要素に整理できる点が印象的でした。これにより、解決すべき具体的な課題が明確になり、自分がリソースを注ぐべき事柄に優先順位を付けやすくなります。 既存施策の強みは? さらに、課題を因数分解することで、単に解決すべき問題だけでなく、既存の施策から成果が出ている部分を見出すこともできると感じました。これは、改善活動のみならず、自分たちの強みを再確認する良い機会となります。加えて、自らの打ち手がどの部分にどのように影響を及ぼすかを理解することで、効果測定が容易になり、施策の評価や次のアクションの決定に大いに役立つと実感しました。 業務標準化の秘訣は? 来季、部署内で進める「各拠点の業務標準化」においては、まず運用の差異がなぜ生じるのかを徹底的に分析し、表面的な違いではなく根本的な要因(たとえばシステム設定やスタッフ教育、地域ごとの慣行など)を明確にすることがポイントです。さらに、標準化が進まない理由を大項目、中項目、小項目という階層構造で整理し、プロセス、人材、システム、ガバナンスといった視点から抜け漏れなく検討することで、優先的に取り組むべき課題が見える化されます。また、標準業務の順守率やエラー率など、具体的な効果指標を設定することで、改善のインパクトを把握しやすくなると考えています。 優先順位は何故? 実践の際は、課題の重要度や緊急度だけでなく、実現のしやすさという観点も加えて優先順位を決めることが不可欠です。現場で課題に取り組む際、皆さんはどのような基準やプロセスを用いているでしょうか。ぜひ、具体的な事例や経験をもとに意見を共有していただければと思います。

クリティカルシンキング入門

グラフが語る学びの転換点

グラフ活用は効果的? データを加工する際、グラフの持つ威力を改めて実感しました。単なる表では見えにくかった傾向が、グラフにするだけで一目で把握できるということが分かりました。特に、強調すべき大きな傾向に矢印などを加えて示すと、視覚的なインパクトが増し、情報に説得力が出ると感じました。 切り分けのコツは? また、どのように切り分ければ傾向が明確になるのかは、実際に手を動かして試行錯誤することでしか掴めないことが分かりました。年代別やキリの良い数値で区切るだけでなく、定性的な仮説を立てながらいろいろな切り口を試してみることが、より正確な情報整理につながると実感しました。 複数角度で見る? 数値そのものだけでなく、率を用いて見ることも非常に重要です。一つの切り口に頼るのではなく、複数の角度からデータを分析することで、より解像度の高い情報が得られる可能性が広がると考えています。 分析が楽しいの? 以前は、数字やデータ分析が苦手だと感じ、グラフ化するのにも抵抗がありました。しかし、実際にグラフにすることで情報が整理され、意外にも分析が面白いと気付くことができました。面倒な作業と感じていた部分が、より良いアウトプットへとつながる大切なプロセスだと認識できたのは大きな収穫です。 資料作成は説得力? 顧客への業務報告や来年度の予算提案の際に、グラフ化したデータを根拠として示すことで、自社の貢献度や改善点を明確に伝えることができます。視覚的な効果や率を意識することで、顧客の意思決定をサポートする説得力ある資料作成に役立っています。 目的は伝わる? これまで、前例をそのまま踏襲するだけで、資料作成自体が目的化してしまい、伝えたい内容が不明瞭になっていた部分がありました。今回、グラフをどのように切り出し、どのように見せるのかと改めて考え直すことで、伝えるべき本来の目的に立ち返る必要性を感じました。 再確認の方法は? 今週は、過去に提出した業務報告書を振り返り、各ページで何を伝えたいのかを再考する作業を行う予定です。皆さんも、資料作成が目的化してしまい、本来の伝えたいメッセージが薄れてしまう経験はありませんか? もしあれば、どのようにして本来の目的を再確認していますか。
AIコーチング導線バナー

「数字 × 確認」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right