データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

クリティカルシンキング入門

分析の切り口を変えて、新たな発見を!

データ分析で解像度を高めるには? データは受け取ったままではなく、一手間加えることで解像度が上がります。絶対値だけでなく、相対値でも数字を出して比率を確認し、数字はグラフ化することで視覚的に課題を見つけやすくなります。また、取り扱う情報が売り手側か顧客側かで分析の視点が変わることを認識しておくことが重要です。 偏りを防ぐためにはどうする? 基本的に売り手側の情報から分解することが多かったため、偏った視点だということを意識しなければなりません。切り口は時間、人、手段など様々な角度から分解し、可能な限りMECE(Mutually Exclusive, Collectively Exhaustive)で分解することで、ダブりなくモレなく網羅的に分析が可能になります。 新たな課題を発見する方法は? 事業部の売上を分解する機会がよくありますが、売り手側の情報に偏らないように注意が必要です。慣れた分解手法を使うことが多いため、異なる視点や切り口、深掘りをすることで、今まで見えていなかった課題を見つけることができるでしょう。 分解のブレを防ぐには? 事業部の売上や部署の売上、メニュー毎の売上、顧客毎の売上など、分解できそうな要素は多くありますが、まず最初に全体の定義を決めることで分解のブレを防ぎ、有効に活用していくことが大切です。毎週や毎月のように分析を行う機会があるため、週報や月報でこれまでと違った切り口で分解を試みてみようと思いました。 異なる切り口での分析の効果は? これまで「課題はこれだ」と決めつけていた部分も多かったため、本当にそうか疑い、別の切り口で分解することで新たな課題を特定できると感じています。早速今回の週報から分析と分解を活用し、全体の定義を決め、MECEで考えるよう心がけ、ダブりやモレのない進行を目指します。

クリティカルシンキング入門

データ分析のコツで業務効率アップを実感

数字分析で見える傾向は? 数字をいくつかのパターンでグラフ化し比較すると、傾向や特徴がつかめることがわかりました。知りたい情報に対して、意図的に複数の分析軸が必要であることも理解しました。特に一番の気づきは、一つの分析結果だけを見てすぐに結論を出すのは危険だということです。急ぐあまりに、ついやってしまいがちですので気を付けたいと思います。 分解時の注意ポイントは? また、切り口を考える際のポイントとして、全体を定義したうえでモレなくダブりなく分解していくことが重要だと感じました。意識してチェックしていないと、歪みが出ることに気付けません。 課題の本質をどう見抜く? 自分の業務では、お客様アンケートなどを整理する際の切り口を設定するときに使えると思いました。さらに、原因不明な状態で課題改善を依頼された際にも有効だと感じます。例えば、上司から「この課題はおそらくこの辺に原因があるからこの方向性で解決してほしい」と相談され、現場では「ほんとの原因はそこではないと思う」という意見の乖離があった際、どのように調整すればよいか悩むことがあります。そのようなときに、要素分解を用いて課題の本質を明らかにすることができると思いました。 精度の高い分析へ向けて 現在推進しているサイトのUI改善は、ヒアリングを中心に改善施策を検討していますが、今一度データの分析を掘り下げてみたいと思いました。その際に以下の点を実施しようと思います。 - 切り口を複数用意するために、分析に必要なデータを多く収集する - 手を動かして分解する - どんな切り口が分析に役立ちそうか関係者にもヒアリングしてみる - モレなく、ダブりなくの視点で問題ないか、分析の切り口を周囲の人と意見を聞き確認してみる 以上の点を意識して、より精度の高い分析を行いたいと思います。

データ・アナリティクス入門

数字から紐解く現場の実情

データ分析はどう見る? 今週はデータ分析の基本的なアプローチについて学びました。データを評価する際は、まず「データの中心がどこに位置しているか」を示す代表値と、「データがどのように散らばっているか」を示す散らばりの2つの視点が大切であることを実感しました。代表値としては、単純平均のほか、重みを考慮した加重平均、推移を捉えるための幾何平均、極端な値の影響を排除する中央値などがあると理解しました。また、散らばりの具体的な指標として標準偏差を学び、データが平均からどの程度離れて散らばっているかを数値で評価できることが分かりました。 現場での活用方法は? これらの知識は、実際の現場での作業時間、コスト管理、安全管理などに役立つと感じました。例えば、複数の現場における作業時間の平均を求める際、単純平均だけでなく、現場ごとの規模に応じた重みをつけた加重平均を用いることで、より実態に即した傾向を把握できると考えます。また、標準偏差を利用することで、同じ作業工程でも現場ごとのバラつきを数値で示し、ばらつきが大きい工程には重点的な対策が必要であると判断しやすくなります。数字の羅列だけでなく、背景や偏りを理解しながらデータを多面的に捉える習慣の重要性を再認識しました。 次のステップは何? 今後は、各現場における作業時間や工程進捗、コストなどのデータを収集し、単純平均だけでなく加重平均や標準偏差も併せて算出することから始めます。特に、同じ工程内で標準偏差が大きい場合は、どの現場で大きなばらつきが見られるのかを明らかにし、その現場の状況や原因を直接確認することで、関係者と改善策を議論します。また、社内報告でも単なる平均値だけでなく、ばらつきや偏りをグラフなどで視覚的に示すことで、現場間の違いや課題を分かりやすく伝える資料作りに努めていきたいと思います。

クリティカルシンキング入門

アウトプットで魅せる!色とグラフの活用術

どの表現法が効果的? アウトプットの目的やメッセージを明確にすることが重要だと感じました。その上で、そのメッセージがより伝わるようにするためには、①グラフの視覚化、②色の効果、③フォント選び、④言葉選び、これらを駆使してブラッシュアップしていく必要があります。そのためには、「どのようなグラフを用いるか」「どの色やフォントを使うか」を理解し、それぞれの特性を活かして使い分けるスキルが求められます。 どのグラフが選ばれる? 特に、自分の場合は「どのグラフが最適か」をあまり意識してこなかったので、プレゼンが刺さる人のグラフの使い方をよく観察し、学びたいと思います。例えば、ある有名な経営者がグラフを多用せずに、訴えたい数字だけをスライドに載せるスタイルをとっていることに興味があります。聞き手や目的によって方法を変えているのかもしれません。 伝え方の意義は? また、WEEK2やWEEK3の学びが今週の内容とつながったことも印象的でした。最初は「クリティカルシンキングなのに、なぜ伝え方(アウトプット)を学ぶのだろう」と疑問に思いましたが、思考とアウトプットは脳内の整理とセットで、より的確な思考に繋げるために重要だと気づきました。 どの工夫で魅せる? 日々の業務では、色やフォント、文字サイズなど、簡単にできる工夫を反映していきます。特に社外へのプレゼンでは、今回学んだポイントをしっかりとチェックするためのリストを作成し、見直したいと思います。さらに、作成したチェックリストをチームにも共有し、活用してもらう予定です。また、自分一人では判断しきれない、訴えたいことの明確さやその根拠の強さを確認するために、他の人の目も借りて修正する習慣をつけたいです。まずは、自分が他のメンバーにチェックしてもらうことから始めていこうと思います。

データ・アナリティクス入門

問題解決のプロセスで成果を出す方法

「Why」と「How」の探求は? 問題解決の4つのプロセスのうち、最後の2つである「Why(なぜ)」と「How(どのように)」について考えました。問題の原因を明らかにするために、プロセスを分解し、どの段階に問題があるのかを特定します。そして、解決策を検討する際には、複数の選択肢を洗い出し、それぞれの根拠を持って選定します。 学びをどう生かすか? これまでの学習でも、都合の良いデータばかりを集めないことや、仮説思考で柔軟に考えることの重要性を学んできました。同様に、「How」についても決め打ちせず、複数の選択肢を洗い出し、判断基準を設け、重要度で比較して解決策を選ぶようにします。 A/Bテストの手法とは? また、A/Bテストについても学びました。複数の案を条件を揃えて比較し、評価する手法です。複数の案を実際に試し、反応を確認しながら仮説検証を繰り返して評価します。ある事例では、スピードが重要で3ヶ月も待てないため、同時にランダム表示を選択しましたが、条件を揃える理由に納得しました。 黒字化への挑戦は成功? ちょうど今週、この学びを生かす機会がありました。自部門の数字が黒字にならない原因を考える場面があったのです。これは長年の問題で、まだ解決に至っていません。今週の学びを基に、原因や解決案を決め打ちせず、プロセスに分解し、複数の仮説を立て、根拠となるデータを示しながら解決策に向けた対策を考えていきたいと思います。 残業時間の原因は何か? 最後に、自身の月々の残業がなぜ80時間に達してしまうのかについても、4つのプロセスを用いて考えてみることにします。さらに、Q2で記載した問題の原因について、ある程度仮説を立てています。それらの仮説が正しいかどうか、データを用いて分析することを早速始めてみます。

データ・アナリティクス入門

仮説検証で未来を切り拓く挑戦

仮説の再考は? 仮説の分類について考える際、私は従来「問題解決を過去から見る」観点に主眼を置いていました。しかし、仮説全体を見直すうちに、「結論や未来を予測し、仮定の上、検証する」点には十分踏み込んでいなかったことに気づきました。 視野を広げるとどうなる? そこで、仮説全体を見る際には、結論や未来の予測を含む多角的な視点を持ち、バイアスにならないよう視野を広げて考えることが重要だと感じました。結論、つまりゴールから出発しデータを集めて検証していくものの、その過程で手戻りが発生し、結果として何度もデータを再確認することがあります。こうした経験から「方向性を見いだせて初めて動き出せる」という体験を増やしてみたいと思いました。時間効率を意識することで、普段の行動に留まりがちになりますが、時にはうまくいかないことを試みる勇気も大切だと考えています。うまくいかないことから得られる手戻りや試行錯誤の過程は、生産効率を低下させる一方で、自己を納得させるための貴重な材料にもなります。 根拠に基づく行動は? 行動計画としては、「仮説を立てる」にあたって、数字に基づく根拠やフェルミ推定を活用し、意思決定において経験則に頼らず新しい立ち位置を見つけることを目指します。また、これまで行ってきたお客様の離脱予測を、仮説をもとに見直し、データ収集を通じて有効な改善策を模索していきたいと考えています。 データの真実は何か? さらに、KPI関連指標については、チーム単体での目標達成がデータ分析を経ないままであったことを反省し、達成の要因を深掘りすることで、本当に正しい事業活動を行えているかを検証します。他チームや類似業務との比較を通じて、データ取得し仮説を立て分析を行うことで、一層の改善を図っていくことを目指しています。

クリティカルシンキング入門

コツコツ積み上げる問題解決力の活用術

問題解決へのアプローチは? イシューをしっかりと定め、常に確認しながら進めることが重要です。何が一番の問題かを考えることから始め、その問題に対して多角的な視野で切り口を見つけます。その後、数字を出し、それを分解してグラフ化してみると、新しい発見が得られます。この発見をもとに仮説を立て、実行し、フィードバックを受けて改善点を見つけ、問題解決に向かって進む、このプロセスを繰り返すことが大切だと感じました。 例題のおかげで、これまで学んだことのプロセスがより理解しやすくなり、一貫性が生まれました。この知識を活かして、自分で課題を見つけ、解決していきたいと思います。 集客戦略をどう見直す? まず、集客についての考察です。ターゲット設定やお店の方針、SNSでのブランディング、各種SNSの運用などを見直しながら、ターゲット層に響きそうな問題ワードをできるだけ多く出します。そして、それに対する解決案を提示し、SNS運用やメニューの再構築を行います。既存のメニューの予約率を月ごとに把握し、低いメニューに対して改善を図り、予約の多いメニューに抱き合わせメニューを作る施策を取ります。 求人の改善策は有効か? 次に、求人については、SNS広告を発信し、どれくらい見られたのか、効果があったのかを検証します。また、広告や打ち出しに対してのフィードバックをしっかりと収集し、改善に活かします。 業務効率化を進めるには? 業務の効率化については、適切な施術を行う際の作業効率化を図るため、マニュアル化を進めます。商品販売時には、購買意欲を上げるトークやそれを効果的に見せる導線を作り、顧客の興味を引く工夫を取り入れます。 今後もこれらの学びを活かし、自分自身のスキルアップに努めていきたいと思います。

クリティカルシンキング入門

数字が切り拓く成長の鍵

数字の意義は何? 数字にただの数値以上の意味を持たせるための第一歩として、数字を分解して理解する方法を学びました。最初に全体像を捉え、その後に複数の切り口で分解することで、数字の意義や解像度を高めることができるという点がとても印象的でした。 実践で何を感じた? 実際に手を動かして作業を進める中で、たとえ重要な意味が見いだせなかった場合でも、「意味が見いだせなかった」という結果自体が大切な情報となることに気づきました。こうしたプロセスを通じて、思考の過程を明確にすることの意義が強調されていました。 フレームワークはどう? また、MECE(もれなくダブりなく)のフレームワークが、層別分解(足し算の考え方)、変数分解(掛け算の考え方)、フロー分解という3つの視点で数字を整理する際に非常に参考になると感じました。このフレームワークを実践することで、より明確に数字の背後にある意味を読み解くことができました。 業務での成果は? 業務面では、事業目標達成に向けたKPI設計やPDCAサイクルのチェックにおいて、数字の分解が役立っています。日々の進捗確認やボトルネックの特定にこの手法を活用することで、マネージャーとしての視座を高め、部下に新たな気づきを提供する場面が増えました。 顧客の課題は? さらに、顧客のニーズや課題の解像度を上げる際にも、数字や状況を複数の切り口で分解して考えることで、問題の原因や改善策を明確にすることができます。例えば、直近の目標に対してKPIがもれなくダブりなく設定されているかのチェックや、カスタマーサクセスプランの再設計、個人目標の複数の切り口でのアクションプランの検討、そして部下のレビュー時に異なる視点を提供することなど、具体的な取り組みが挙げられます。

クリティカルシンキング入門

数字の見方が変わる!グラフの魔法

数字を視覚化するポイント 数字の分解について、私は4つの大きな学びがありました。 第一に、数字を目で見るだけではその差が分かりづらいという点です。グラフにして視覚的に確認することで、数字の差や傾向が見えてきます。また、複数のデータをグラフ化して掛け合わせて見ることにより、それまで見えていなかった部分も知ることができます。 グラフ作成のコツは? 第二に、グラフを作成する際に機械的に5や10で刻んでしまいがちですが、そのグラフの目的に合わせて刻み幅を考えることが重要です。顧客層であれば、学生と社会人を意識した年代で分けるなどの工夫が必要です。 多様な切り口で分析するには? 第三に、数字を様々な切り口で分解することで傾向をより詳しく知ることができます。逆に、細かく分解しないまま分析を行うとミスリードにつながる可能性があります。 MECEの活用法を知る 最後に、MECEを使って漏れなくダブりなく分解することが大切だということです。まず全体を定義してから、目的に合わせた分解方法を考えることが必要です。 さらに、留学プログラムの参加者の分析(地域別、性別、年齢別、分野別など)や助成金の配分、アンケートや提出物の回収の際の分析(期日までに全員回収するのは難しいため、回答期日の分布を分析して効果的なリマインドタイミングを導き出す)にも、今回学んだ数字の分解方法が活用できると感じました。 学びを実践でどう活かす? 今週学んだ内容を改めてノートに書き起こし、職場で確認できるように目に見えるところに置く。実際に数字を分析する機会はなかったが、1つの留学プログラムで複数の切り口を考えて分解し、得られた結果を同僚と共有することで、実践的なスキルアップにつなげることができると思いました。

クリティカルシンキング入門

新発見!分解で見える本質

イシューの意味は? 「イシュー」とは、今ここで問い直すべき核心の問題を意味し、これまで学んだ分解やロジックツリーの考え方を活用できることを実感しました。その上、手順を踏んで伝える言語化や視覚的に示す方法との連動が重要であると認識しました。 事例から何を学ぶ? ファストフード店の事例では、客の立場では実感していたものの、経営者の視点から内外環境に応じたイシューの抽出やそれに基づく施策の検討が難しく感じられました。特に、売上の分解において、平日と休日、ハンバーガーとサイド、若者とシニアといった切り口は、自分の発想にはなかったため、新たな気づきを得ることができました。 売上戦略はどう練る? この考え方は、自身が担当する売上拡大策にも活用できそうです。売上を分解し、点数や単価、カテゴリーなど、どの切り口や問題があるのかを明確にした上で、適切な打ち手を講じていくことが必要だと感じています。また、取引先の食品小売店の売上に対しても、数字の内訳をしっかりと把握し、的確な施策を提案することが求められるでしょう。 日々のスキル向上は? 分解のスキルや経験が必要だと実感しているため、日常のニュース(決算関連やキャンペーンなど)の背景を分解・整理することを意識しています。さらに、社内や取引先への売上確認や報告が月次単位で行われることから、定期的にOutlookのスケジュールにリマインダー(毎月25日朝8時)を設定するなど、日々の業務で経験値を積む計画です。 理論の実践はどうなる? 「分解(階層、変数、プロセス)、ロジックツリー(インパクトの大きいものから)、MECE(漏れやダブりなく)」といった考え方を常に意識し、業務改善に努めていきたいと考えています。

データ・アナリティクス入門

小さな実験が拓く大きな未来

仮説はどう捉える? これまでの演習よりも多くのデータに触れる機会があったため、ただデータを見るだけではなく、まず「こういう仮説があるのではないか?」という視点を持って取り組むことが重要だと実感しました。また、仮説は一つに固執せず、他の可能性も網羅的に考えることで、思いつきに頼らないアプローチができると感じました。 PDF加工の落とし穴は? 一方で、PDFデータの加工には非常に頼りになる一面があるものの、誤認識により表の数字が間違うケースもあったため、過信せずに慎重に取り扱う必要があると痛感しました。 数字整理はどうする? ファネル分析とABテストは、どちらもすぐに実践できる手法として役立つと感じました。ファネル分析では、業務フローの数字が断片的にしか取得されていない現状を踏まえて、業務フローを整理し、必要なデータを集めてファネル化することが求められます。 仮説検証は進んでる? また、ABテストでは、うまくいっていない点に対して仮説を立て、比べるべき内容を明確にして、結果が確認できるデータを準備することが大切です。これらの手法を同時期にテストし、比較検証することで、より精度の高い分析が可能になると感じました。 分析の意義は何? さらに、なぜファネル分析やABテストが必要なのか、その意義を自分なりに言語化することも重要です。今週学んだ内容を整理し、データアナリティクスの重要性を前提として、具体的な提案にまとめる作業は大変有意義でした。 実践の意味は何? 最後に、実データに毎日触れてトライアンドエラーを重ねることが、さらなる改善点の発見につながると実感しました。これからも、日々の実践を通じて知見を深めていきたいと思います。

「数字 × 確認」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right