データ・アナリティクス入門

データのバイアスに立ち向かう新視点

生存者バイアスのリスクとは? 「生存者バイアス」は、分析を主とする仕事に携わる人でも陥りやすい問題であると実感しました。データの扱い方だけでなく、分析対象の選び方についてもバイアスにとらわれず、ニュートラルに進めることが、自分の課題だと気付くことができました。 目的を明確にする重要性 BPOとして業務に携わっていると、データの使用目的が特に重要である場面が増えると感じています。以前の「マーケティング」という大義のもとでは、目的から外れることは少なかったのですが、目的を明確にすることが、業務全体でますます重要となりそうです。 データの純粋な観察方法 今回の講義を通して、データを純粋に観察する習慣を付け、仮説を立てることを重視し、比較対象が正しいかの確認を怠らないようにしたいと考えています。業務でバイアスの怖さを感じているため、事前の確認によって、バイアスの回避を心掛けたいと思います。

戦略思考入門

数字から実感!気づきのプロセス

グラフはどう読む? 数字やデータから読み解く力が不足していると実感しました。これまではグラフを見て理解したつもりでしたが、複数のグラフを組み合わせて考察する力が足らず、物事が前に進まなかったのです。どのようにグラフを読み解けばよいのかが分からず、自分でグラフを作る段階から学ぶべきかどうかすら不明でした。 消費者視点はどうなる? モノづくりではなくコトづくりの仕事をしているため、グラフの読み解きに苦労しました。しかし、モノを作るクライアントやコンサルタントから商品の消費者目線での座談会開催を依頼される中で、モノづくり側の視点にも少し理解が及びました。 制作過程はどう理解? 消費者目線では金額の高さや安さが購買の決定要因とされがちですが、どのような過程で商品が作られたのか理解することも重要です。そのため、事前のヒアリングで制作の過程などを詳しく聞いておくことが大事だと感じています。

クリティカルシンキング入門

MECEで解決!分解のススメ

分解で何が見える? 分解によって状況の解像度が上がることを学びました。データの加工や分け方の工夫、分解時の注意点を押さえることで、問題点の把握が可能になると思いました。特に、MECEを前提に「モレなく、ダブりなく」を意識しながら切り口を考えることで、問題をより具体化できると感じました。 業務でどう活かす? 自分の業務では、プロジェクトの会議や提案資料の作成において、この分解の基礎を活用しています。MECEを意識し、「モレなく、ダブりなく」という観点を持ちながら、最も適切な切り口を考え、全体を定義することで、状況の解像度を向上させたいと思います。 実践はどこから始まる? まずは実践として手を動かし、分解に挑戦したいです。MECEの「モレなく、ダブりなく」を意識し、層別、変数、プロセスのどれが最適かを考えることで、抽象化されていた問題点を具体化し、解像度を高めていきたいと思います。

クリティカルシンキング入門

データ分析で未来を変える!

学びの意義は? 私の学びについてお伝えします。 数値の発見は何故? 数値データの詳細な分析は重要だと感じました。データの分類手法により異なる結果が得られることを理解しました。また、全体を定義し、仮説を立てることの必要性も痛感しました。具体的には、フレームワークとしてMECEを利用することです。 医療解析の視点は? 医療技術関連に関しては、まず数値化可能なデータを取得し、求めたい結果を明確にしてデータ全体を定義しました。その後、仮説を立て、MECEを活用して分析を進めました。関連性がありそうな分野として、曜日別の忙しさや業務分析にこの手法が使えそうなので試す予定です。 未来の計画はどう? 来週には、自分に関連する業務について計画を立て、その後、今回学んだ手法を活用して曜日別・年齢別の業務分析を行います。その分析結果を振り返り、上司や他の受講生とも共有したいと思っています。

クリティカルシンキング入門

心に響く!視覚で磨く伝える力

効果的な視覚情報の秘訣は? 情報を伝える上で、視覚的な情報の作り方が非常に重要であると改めて感じました。伝え方は環境や状況によって異なるため、目的に応じた最適な見せ方を選べるよう、視覚情報の表現方法の幅を広げる必要があります。 自分の視点で見る資料は? 普段目にする資料は、「自分ならどのように作るか」という視点で観察するよう心がけています。また、文章作成時には、アイキャッチの活用、文章の硬軟のバランス、そして読みやすい体裁の3点を常に意識し、読み手の立場に立って内容を確認する習慣を続けています。 プレゼン成功の秘策は? さらに、8月22日に他部署の行動変化を促すためのプレゼンテーションを実施する予定です。資料全体の構成や使用するデータの選定において、目的と対象に合わせた最適な見せ方を意識し、作成内容が理解促進に効果的かどうかを事前に第三者の意見を取り入れて確認する予定です。

クリティカルシンキング入門

問い直しで見える新しい景色

問いはどのように設定? 問いを正しく設定することが非常に重要であると実感しました。問いの立て方一つで導かれる答えが大きく変わるため、問題の本質を見極めることが求められます。そのため、データをどの角度や観点から見るかを常に意識し、さまざまな視点から疑問を持って捉える必要があると感じました。また、プロセスを進める中で、最初の問いを再確認し続けることで、答えがぶれずに一貫性を保つことができると考えています。 損益管理で何を問い直す? また、損益管理における課題についても、まず問いが何であるかを改めて考える必要性を感じています。具体的な行動に焦点を合わせがちですが、何が本当の問題なのかを問い直すことに意識を向けることが重要だと思います。さらに、この考え方を自分だけでなく部下とも共有することで、彼らにも問題の本質に気付くきっかけを提供し、共に成長していけるよう努めていきたいと考えています。

データ・アナリティクス入門

グラフで解く学びの秘密

データ表現はどう? 数値だけではバイアスや誤読が起きやすいと改めて感じました。適切な表現方法でデータをビジュアル化することで、データの中身や意味への理解が深まると実感しています。また、幾何平均や加重平均の計算方法を再確認するとともに、有意差95%に関する知識も大きな学びとなりました。 グラフってなぜ大切? 根拠を示したり相手と共通認識をもつためには、グラフやその他のビジュアル表現が重要です。プレゼンテーションで用いるだけでなく、自分自身がデータ内容をより深く理解するためにも、積極的にビジュアル化を活用していきたいと思います。 営業でどう伝える? 今後、営業成績や契約管理など、数値管理が重要な業務において、ビジュアル化は全員の共通認識を促す有効な手段となるでしょう。また、営業現場においても、説得力を高めるために、数字とグラフの可視化をうまく活かしたいと考えています。

クリティカルシンキング入門

データを活かす!伝える力が磨かれる瞬間

伝え方はどうする? 伝えたいことをしっかりと理解することがまず重要です。そのうえで、自分と同様に情報を理解してほしい相手に対して、どのように表現すれば伝わりやすいかを考え、工夫して可視化します。重要なのは、伝えたことではなく、伝わったことが伝えたことと考え、どのように伝えるかを思考することです。 データの視点を変える? アンケートやデータを目の前にし、それを社内メンバーに共有するとき、一つのデータでも見る角度を変えてみることで、より理解を深めることができるかもしれません。そこで、ひと手間工夫をかけてみようと思います。 提案で納得できる? 自分でデータを取り扱う場面だけでなく、データを提供してくれる人に対しても、「このような切り口や見せ方ではどうか」と提案やアドバイスを行いたいと思います。これにより、より多くの人が情報を理解し、納得することができればと考えています。

クリティカルシンキング入門

異なる視点でデータを深掘りしよう

どんな癖に気づいた? 仕事以外で演習を行うことで、自分の考え方の癖を再認識することができました。また、データ分析においても、様々な可能性から物事を捉えなければ誤った方向に進んでしまう可能性があるため、慎重に進める必要があることを理解しました。今後も常にこの切り口で良いかを確認しながら進めていきたいと思います。 アンケートはどう見える? 研修の受講アンケートの分析を行う際には、そのデータをそのまま受け止めるのではなく、異なる切り口で見たり、他のデータと組み合わせたりすることで、新たな観点からアンケート結果や傾向を捉えることができると思います。 どの切り口で検討? データ分析を行う際、まずは考えられる切り口を出し、それらを組み合わせて分析を進めていこうと思います。また、データ分析後も別の切り口がないか、さらに深堀りが必要ではないかを立ち止まって考えていきます。

データ・アナリティクス入門

卒業生もお宝!データ分析で見えた新視点

ファネル分析の新たな視点 最後に学んだファネル/ダブルファネル分析は、とても印象に残りました。感覚的にファネル分析は理解しており、業務で使っていたのですが、購入後の顧客の動きを分析するためにダブルファネル分析が効果的であることが、新たな知識となりました。 卒業生追跡の重要性とは? 私は大学職員として、在学生の動きを分析することがまず重要ですが、卒業後の卒業生の動きを追いかけることも同様に重要だと感じました。大学の評価を高めるためには、卒業生が社会で自分の大学をどのようにアピールしてくれるかが今後の鍵となるのです。 意見収集体制の構築方法 在学生だけでなく、卒業生の連絡先もストックしておき、大学に対する意見やフィードバックを常に受け取れる関係を築いていきたいと思います。また、大学内だけでなく、外部の意見も蓄積してデータ化する体制を構築する必要があると考えています。

データ・アナリティクス入門

比較で見つける学びのヒント

比較はなぜ大切? 分析において、比較が本質であることを再認識しました。何かと比較することで評価が可能になり、比較しなければ正確な評価は得られないと実感しました。 同条件比較って? また、評価の際には同一条件、すなわち「Apple to Apple」の比較を意識する重要性も感じました。分析の第一歩は仮説の立案から始まり、その仮説を検証するために、何と何を比較すべきかを明確にする点が印象的でした。 業務分析の極意は? 日々の業務では、自分自身のデータ分析はもちろん、他のメンバーや関係者が行った分析も、このプログラムで学んだ体系化された論点を用いて見極め、改善点を具体的に指摘できるよう努めたいと思います。 爆撃機から学ぶ? さらに、学習事例として紹介された爆撃機の事例は、一見とらえにくい対象にどのように着目し、考察を展開するかについて大変興味深く感じました。

データ・アナリティクス入門

平均値から見える数字の世界

代表値と散らばりは? 今回の研修では、動画の代表値として単純平均、加重平均、幾何平均、中央値について学びました。それぞれの特性や使い方を理解し、また、代表値だけでなく標準偏差などを用いた散らばりの解析も重要であることを再認識することができました。グラフ化する前には、まず仮説に基づいて適切な数値を選び出し、データの理解を深める必要があると実感しました。 業務にどう活かす? 業務においても計数を扱う際には平均値を使う機会が多いですが、その使用が本当に妥当かどうかを検討する習慣を身につけることが大切だと考えています。今回学んだ内容をもとに、平均値や散らばりを踏まえてグラフ化することで、自分自身が作成したグラフだけでなく、他者が作成したグラフについても、その値や構成が適切かどうかを確認できると感じました。こうした取り組みは、全体のデータの精度向上につながると考えています。
AIコーチング導線バナー

「自分 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right