クリティカルシンキング入門

学びが現場を変えるヒント

データ傾向はどう把握? 事実データを可視化し、その傾向を的確に把握して分析を進めることで、実務において「イシュー」を正しく設定する手法が非常に有効であると感じました。総合演習といった実践的な例を通じて学びを深めた結果、今回の経験が今後の自分の成長につながるという具体的なイメージを持つことができました。 根拠提案はどう実現? また、仕事においては、対顧客向けのプレゼンテーション、プロジェクトへの参画後の要件定義、さらにはプロジェクト管理における課題管理やQA管理など、さまざまなシーンで今回の学びを活用できると感じています。特に、顧客が抱える課題に対して正しい問題設定がされていないケースが多いことから、今回の研修を通じて根拠ある提案が実現できるようになると期待しています。

データ・アナリティクス入門

Excel実践で磨くデータ思考

データ分析の意味は? データ分析では、比較と独自の観点が価値を生むと感じました。基本的な内容でありながら、Excelでの実践的な手法を学ぶ中で、自分の思考プロセスが整理され、視野が広がったと実感しています。 フレームワーク活用の秘訣は? 今回学んだフレームワーク、たとえばファネル分析や3C、4Pなどを中心に活用したいと考えています。定期的に振り返りを行うことで、より効果的な比較ができるよう意識して取り組むつもりです。 転職後の展望は? さらに、業務においても今回の学びを基礎として活用します。今後、データマーケティング職への転職が決まっているため、壁にぶつかったときは学んだフレームワークや思考プロセスに立ち返り、より広い視野で問題に取り組む方針です。

データ・アナリティクス入門

仮説検証で磨く伝わる分析術

どんな学びがあった? 今回の学習を通じて、自分の不足点や修正すべき点を改めて確認することができました。 仮説検証は十分? まず、仮説を検証する過程で、データの取得や加工は行ってきたものの、否定的な視点からその仮説が正しいかどうかを十分に検証する必要があると感じました。次に、分析時には適切なフレームワークの活用が重要であると再認識しました。さらに、結論をまとめた際、相手に正しく情報を伝えるために、グラフなどの視覚資料の選び方や説明の仕方が大きく影響することも学びました。 改善に向けて何? これらの学びを生かし、今後は自己の課題や修正点に注意しながら、分析や報告の方法を工夫していくことで、上司の理解や納得を得られる報告資料を作成していきたいと考えています。

データ・アナリティクス入門

新たな視点で未来を切り拓く

分析の目的は何? 分析の目的や検証したい仮説を明確にすることで、アウトプットの内容が大きく変わると感じました。いきなり分析に着手するのではなく、どの切り口を採用するかを検討することで、分析の精度が向上すると実感しています。 新たな視点はどう捉える? これまで、売上データの分析など同じ流れで進めてきた結果、似たようなアウトプットになっているという課題がありました。そのため、今後は新たな視点を導入し、自分自身やチームのメンバーが新しい気づきを得られるよう意識していきます。 バイアスをどう排除する? また、従来のバイアスをできる限り排除する分析手法と、その結果をチーム全体で共有する取り組みを進め、具体的な施策につなげられるよう努めていきたいと考えています。

クリティカルシンキング入門

伝え方改革:魅せる情報術

情報伝達の工夫は? 学んだことは、情報を伝える際の工夫がいかに重要かを実感させる内容でした。まず、グラフなどを活用し、適切な単位やタイトル、図表の選択によって、データの見せ方が大きく伝わりやすさに影響することを学びました。また、フォント、色彩、アイコンといった要素の一貫性と整合性が、メッセージ全体の説得力を左右する点も印象に残りました。 聞き手に寄り添う方法は? さらに、聞き手の認識や関心に合わせた説明の順序や表現方法を工夫することで、情報がより効果的に伝わることに気づきました。今後は、日常のさまざまな場面で、相手の立場や心理状態を意識したメッセージ設計を実践し、自分の伝えたいことがわかりやすく正確に伝わるよう工夫していきたいと考えています。

戦略思考入門

データで支える勇気ある一歩

優先判断の秘密は? 優先順位を明確にし、不要なものは思い切って捨てる判断が非常に大切だと感じました。不要な選択を行う際、経営陣への説得にエネルギーが必要になるものの、冷静な判断と勇気を持って一歩踏み出すことが求められると思います。また、やめる決断を下す場合は、データなど固い根拠を用いてしっかり裏付ける必要があると考えています。 効率化の秘訣は? 実際、他部署で実施している取り組みや、会議の議事録の活用、そしてAIの導入により従来の手作業を見直す事例などを参考に、自部署でも効率化に取り組みたいと思います。専門分野に依頼することで、本来必要のない業務を削減し、その分自分の業務効率を高める取り組みを進めていくことができると感じました。

戦略思考入門

数字で見極める捨て方改革

なぜ捨てるのが難しい? これまで、自分は捨てることを非常に難しく考えていたという実感を改めて持ちました。過去からの関係性を重視するあまり、本当に必要なものとそうでないものを見極めることが難しかったのだと思います。 どうやって選び取る? しかし、今回、明確な判断基準として数値やデータを用い、何を優先し何を捨てるのかを選択することが可能であると気付きました。売上拡大や利益率向上を目指して多くの改善テーマに取り組む中で、従来から掲げてきた改善テーマについても、意味を再検証する必要性を感じています。具体的には、以前から実施していた特定のコスト削減策について、他の施策と数値やデータで比較し、優先順位の低いテーマは見直す判断に至りました。

クリティカルシンキング入門

問いが開く思考の扉

問いの意味は何だろう? 「どのような問いをたてるか」が、クリティカルシンキングの核心であると感じました。イシューを特定する際、問いの形にすることは、後の考察や議論の方向性を明確にし、思考の焦点を定める手助けとなります。 自分の課題は何? また、分析作業においては、単にデータに触れるのではなく、自分が置かれている立場から「課題」や「目的」を明確にして、具体的なイシューを特定するよう心がけています。その際には、まず問いを立て、問いを残し、そして共有することで、より深い理解と有意義な議論が促進されると実感しています。 継続は成果にどう? 常に「問い」を軸に置いた思考を続けることで、分析の質が向上し、論点が整理されると感じました。

データ・アナリティクス入門

納得を呼ぶ仮説とデータの魔法

仮説の種類は何? 仮説には「結論の仮説」と「問題解決の仮説」の2種類があると学びました。また、複数の仮説を立てることや、各仮説が網羅的にカバーされているかを確認する点がポイントとして挙げられています。 どんなデータが大切? さらに、分析や資料作成の際には、比較するためのデータ収集を行い、反論を排除する情報にまで踏み込むことが重要です。自分に都合の良いデータだけを集めるのではなく、あらゆる角度から納得感のある結論に導くために、仮説を立証するためのデータ収集と加工を繰り返すプロセスが必要だと感じました。また、報告や資料作成の際には、意識的に反論者の視点を取り入れることで、より説得力のある分析ができるようになると確信しています。

データ・アナリティクス入門

仮説が切り拓く新たな視点

仮説設定はなぜ必要? データを加工する前に、まず仮説を立てることが非常に重要です。分析は目的があって成り立つため、単に数値や結果そのものにとらわれず、目的に照らした適切な加工方法を検討する必要があります。数値をそのまま受け取るのではなく、自分の観点を加え、他にどんな見方ができるのかという視点の多様性を意識します。また、確からしい仮説の立案のみならず、素早く検証するスピード感も大切です。 分析視点はどう選ぶ? 月次や週次の業務分析においては、どの角度からデータを切り分けるのが最も適切かを常に考慮します。分析後は、まとめた内容が本当に正しい観点に基づいているか、過去の踏襲に陥っていないかを再検討することが求められます。

データ・アナリティクス入門

データを活かす!視覚化テクニック入門

データはどう活かす? データは単にビジュアル化すれば良いわけではなく、用途に応じて適切に使わなければなりません。また、単にグラフに表現された情報だけでなく、その背後や空白の部分からも情報を見つけ出すことができます。さらに、TPOに合わせて代表値の取り方や計算方法が変わりますが、その結果だけで仮説を導き出すことはできません。 難業務の可視化方法は? 現状、私が携わっている業務ではデータを利用したり、数値化・グラフ化する機会があまりないため、自分の業務に適用するのが非常に難しいと感じています。反対に、数値化やグラフ化が難しい業務をどのように工夫して視覚的に示すことができるのか、そうした方法について学びたいと考えています。

データ・アナリティクス入門

複数仮説が切り拓く新たな視点

複数仮説は有益? フレームワークを活用することで、仮説作成における2つのポイント―複数の仮説を立てること、そして仮説同士の網羅性を担保すること―が非常に分かりやすくなりました。いくつかの手法を身につけることで、思考が偏りがちなときに役立てられると実感しています。 決め打ちは疑問? また、仮説を決め打ちにしない姿勢の大切さも感じました。これまでは、一つの考えに固執してしまいがちでしたが、フレームワークを使うことで複数の視点から検証し、反論を考慮することが可能になりました。今あるデータだけでなく、必要な情報は自分で収集するという意識を持ち、より抜け漏れのない仮説作りを目指していきたいと思います。

「自分 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right