データ・アナリティクス入門

段階的アプローチで着実成長

講義で何を実感した? これまでの講義を通じて、分析のフレームワークや思考の順番をしっかりと理解することができました。段階を追って課題を解き明かすことで、最初から一気に取り組むよりも、より複雑な問題に対処できると実感しています。 課題設定はどう進む? データ分析の業務では、ただ急いで分析を実施するのではなく、まず解決すべき課題を明確にし、仮説を立てながら進めることが大切だと感じます。また、必要に応じてデータを扱う関係者と意見交換しながら検証を進めることで、より確実な結果にたどり着けると思います。 日々の工夫は何? 今後は、学んだフレームワークや仮説検証の流れを自分の言葉で他者に説明し、日々の業務に取り入れる工夫をしていきたいと考えています。小さな実践を積み重ねることで、自分の思考プロセスが自然に身につき、学びを習慣化できるよう努めていきます。

クリティカルシンキング入門

データ整理の極意と深掘りのコツ

情報整理の重要性とは? 情報の分け方に漏れや重複があると、データの理解がぼやけてしまうことがわかりました。情報の分け方を工夫することで、伝えたいことをより明確にすることができます。また、漏れや重複は一度書き出して整理するとわかりやすく感じました。 効率的な分解方法を探る 全体像と把握したいことを明確にしたうえで分解に取り掛かるようにし、その際はいろいろな視点や切り口で考えられるように、まず書き出して整理してみます。分解後のデータを見て、他の視点や切り口がないかさらに深掘りしてみることも重要です。 問題分解の実践法を学ぶには? 問題分解の実例を知り、一度自分で解いてみることで習得しました。特にプロセス分解は頭で理解していると疎かになりがちなので、ステップごとに分解をして一つひとつ深掘りしてみます。また、書き出して整理する習慣も習得したいと感じました。

クリティカルシンキング入門

問いから広がる学びの扉

問いの本質は何? 今週のライブ授業では、クリティカルシンキングにおいて「問い」がいかに重要であるかを学び、最後のまとめを行いました。特に、あるスポーツリーグの例では、いきなり数値の扱いに取り組むのではなく、まずは問いを明確にしてからデータ分析を進めることの大切さを実感しました。これまでは数値から意味を見出そうと必死になっていたのですが、まず問いを整理してから分析することで、より深い洞察と説明のしやすさが得られると感じました。 仕事の問いはどう? また、仕事においても、何かを考え始める際は最初にイシューを明確にすることが重要だと学びました。具体的には、まず自分が解決すべき問いを立て、その問いに基づいて今何をすべきか検討します。さらに、この問いを周囲と共有し、自分の考えに対してフィードバックを得ることで、より良いアイデアにブラッシュアップできると感じています。

データ・アナリティクス入門

ステップで変わる!問題解決力の磨き方

ステップを踏んで考える重要性 分析する際には、大きな点だけに焦点を当てず、ステップを踏んで考えることが重要です。ロジックツリーを活用することで、大きな問題を細分化して俯瞰できます。この手法により、自分だけでなく他の人も問題点を理解しやすくなり、様々な角度から物事を捉えられるようになるでしょう。 「なぜ」にとらわれない方法とは? 「なぜ」に注目しがちですが、大きな問題を細分化して捉えることで、複数の解決策を見つけることが可能です。ビッグデータの中から、どの数字を分析対象にするかを目的から逆算して決定することが必要です。 ビッグデータ分析の始め方 まずは、ビッグデータを理解しましょう。そこから目的を定め、分析すべき数字を選びます。ロジックツリーを利用して異なる方向からのアプローチも試みると、違う視点から全体を見渡し、新たな発見が得られるかもしれません。

データ・アナリティクス入門

受講生が実感する学びの変革

目標はどう意味づけ? 目標設定は、データ分析のみならず、学び全般にとっても非常に重要だと再認識しました。受講前に描いていた理想像よりも、学びを終えた今の自分は実践できることが増え、単なる分析のプロから、ビジネス現場で分析手法を効果的に活用するプロへと成長できたと感じます。 活かし方はどうして? この学びは、日常のあらゆる業務に活かしていきたいと思います。データ分析の知見が、問題解決や新たな施策の立案に大いに役立つと理解したため、業務全体でその手法を意識していくつもりです。 従来手法は適切? また、現在の担当業務を見直すことで、従来の方法が本当に適切であったのか、見逃している課題はなかったのかを改めて点検していこうと考えています。その結果を踏まえ、今回の受講で得た実体験の知見を活かし、今後必要となる知識やスキルの習得にも取り組んでいきたいです。

データ・アナリティクス入門

学びが起こす知見の化学反応

問題点はどう把握? プロセスや構造に分けて問題点を特定することが、その後の質に大きく影響すると実感しています。まず、問題点を明確に洗い出し、その原因に対して仮説を立てるプロセスが重要です。仮説を検証するために、データをもとに検証を行い、比較という視点を取り入れることで、効率的かつ網羅的な検証が可能になると考えます。 仮説の基礎は何? 良い仮説を立てるためには、具体的なイメージを描くことが不可欠です。そのためには、まず自分の実際の経験に基づいた知見を持つこと、また他者からの豊富な経験を聞くことが有効です。さらに、異なる部門や業界の意見に触れることで、知見に化学反応が起こり、新たな視点を取り入れることができます。 知見を守る秘訣は? 結果として、経験の幅と質を高めることで、絶えず学び続けながら自分の知見の鮮度を保つことができると考えています。

クリティカルシンキング入門

数字に惑わされぬ視点の磨き方

なぜ数値に固執する? 数字を分析する際、自分の仮説を証明しようと特定の数値にこだわってしまい、少しの分析で思考が止まってしまう癖に気づきました。本来、数字は客観的なデータとして取り扱い、そこから見えてくる問題の本質をファクトとして捉え、その後に物事を考えるステップを踏むことが重要だと感じています。 採用で見落とすポイントは? 採用業務においては、応募数、書類選考、面接通過、内定承諾といった時系列データを元に、過去の数値と比較しながら問題点や成功点を見極める必要があります。しかし、これらの数値だけでは、表面上は問題がなさそうに見える場合でも、実際には採用候補者の属性や自社の面接体制など、より詳細な要素に目を向ける必要があると痛感しました。こうした観点で情報を整理していくことで、よりクリティカルな問題解決に結びつく可能性が高まると考えています。

クリティカルシンキング入門

学びを活かせる!視覚化で伝える極意

考え方から視覚化へ進化 Week01からWeek04までの学びを通じて、「考え方」や「文章化」から「視覚化」へと自らの理解が深まってきました。相手に何を伝えたいかを「視覚」的に表現することが重要で、学んだことが線として繋がる感覚を得ています。 最適なグラフ選びの重要性 「視覚化」の過程で、適切なグラフを選択することが大切です。データが時系列の場合は縦の棒グラフ、経緯や変化を伝えたい場合には折れ線グラフが推奨されます。特に、普段の仕事では「帯グラフ」を使う機会が少ないことに気づきました。 読んでもらえる文章を目指して 良い文章には目的性、読者理解、しっかりした内容、読んでもらえる要素が必要です。特に、タイトルやリード文に工夫を凝らすことで、興味を持たせることがポイントです。キャッチーなタイトルとアイキャッチを意識して作成します。

戦略思考入門

勇気ある捨てるで本来の自分へ

「捨てる」は必要? 講座全体を振り返る中で、印象に残ったのは「捨てる」という言葉に対する否定的なイメージです。一見、不要なものをすべて除去するようなネガティブな印象を受けますが、実は本来のありたい姿に近づくために必要な考え方であると再認識しました。不要なものを当たり前とするのではなく、理論に基づいたデータの解析や選択が不可欠であると感じました。 現状リセットはどう? 自部門の業務にあてはめると、不具合対策の一環で設計時に追加された検査作業など、当たり前になっている工数を見直す必要があります。まずは「捨てる=元に戻す」という視点で、現状をリセットすることから取り組み、そのためのデータ収集を確実に行います。その上で、元の状態に戻した後の改善策は、現場の努力の成果として、現場目線と会社目線の両面から業務を推進していきたいと考えています。

データ・アナリティクス入門

数字の裏側を読み解く学び

データ深堀の意義は? 今回はこれまでの総括に加え、データを深堀するプロセスを順を追って学ぶことができました。目の前の数字を鵜吞みにせず、どのように分解できるかを都度確認することの重要性を再認識すると同時に、思い込みだけで動かないというデータ分析の基本を実感しました。 現場課題解決の鍵は? AIコーチングからは、実際の業務でどのようにデータを切り分け、仮説を立てて検証するプロセスを実践すべきか、また分解したデータをもとに現場の課題解決に直結するアクションプランをどのように構築するかという問いかけがありました。具体的には、まずKPIや社内で多くの方が注目している数字を切り分け、仮説の構築に取り組むべきと考えています。アクションプランについては、課題に応じて、自分の立場から現実的に着手できるものを見極めることで構築できると感じています。

データ・アナリティクス入門

仮説と五視点が導く仕事の知恵

どうして5視点が必要? 今回の学習で特に印象に残ったのは、比較分析を行う際にプロセス(仮説)が必要であり、さらに5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)と3つのアプローチ(グラフ、数字、数式)の存在が重要であるという点です。 進める分析手順は? 分析のプロセスは、まず目的(問い)を明確にし、問いに対する仮説を立て、必要なデータを収集し、そのデータをもとに仮説を検証するという手順で進められます。これまで、どの視点を重視するかについて特に意識していなかった自分にとって、今後はこの5つの視点から必要なものを選び、意識的に分析を行う癖をつけることが大切だと感じました。 実務でどう活かす? 仕事のあるゆるシーンにおいても、自分の考えや判断の根拠として分析を活用していきたいと思います。

クリティカルシンキング入門

全体把握でMECEを極める

どのように分解する? 分解作業において、要素を漏れなく洗い出すのが自分には苦手であると気付きました。ダブりなく整理する点は、既に出した切り口を見直すことで対処できるものの、漏れを防ぐには全体を捉え、どのように分解すればMECEになるのかを常に意識する必要があると感じました。また、分解の結果、明確な傾向が見えなくても、それ自体が一つのデータであり、次の考察に役立つという考え方にも納得しました。 労務データの新視点は? 労務問題を考える際、組織ごとの残業時間やエンゲージメントサーベイといった複数のデータは活用してきましたが、データの加工や組み合わせによる新たな切り口で分析する経験は少なかったです。今後は、サーベイの種類を分類し、データを整理・集計することで、より新鮮な視点から組織を見据えていきたいと思います。
AIコーチング導線バナー

「自分 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right