クリティカルシンキング入門

柔軟な理由が生む伝わる力

伝わる文章って何が重要? 今週の講座では、「相手に伝わる文章を書くポイント」を学びました。日本語の正確な使い方や、文章評価、そして手順を踏むことの重要性については再確認できたものの、特に印象に残ったのは、状況や相手に応じて理由付けを変えることの大切さでした。これまで一つの正しい理由に頼る傾向があった私ですが、相手や場面に合わせて複数の理由を用意する柔軟さが必要だと気づいたのです。この発見は、単に文章を書く力だけでなく、自分の考えを整理して伝える能力そのものを向上させる貴重な学びとなりました。 複数の理由付けはなぜ効果的? 業務では資源価格の情報収集と分析を担当していますが、上役や関係者への説明時に、データだけではなく相手や状況に合わせた複数の理由付けが非常に有効であると実感しています。ふんわりとした印象や可能性に基づく理由付けも、場合によっては説得力を高めることに気づき、説明の幅を意識するようになりました。これからは、分析結果を整理して提示する際に、データに加え補足的な視点や相手の立場を考慮した複数の説明パターンを準備し、より多角的な情報提供を目指したいと考えています。

クリティカルシンキング入門

グループワークで磨く思考の翼

授業の成果はどう? Live授業では、マクドナルドの課題に取り組んだことがとても印象に残りました。短いグループワークの時間の中で、メンバー同士が次々と仮説を立て、必要な課題を特定するプロセスに取り組めた点は、クリティカルシンキングが着実に身についていると実感できる貴重な経験でした。 分析のばらつきはどう? 一方、興味が薄い題材では、分析の精度にばらつきが見られることも感じました。今後は幅広いデータパターンの知識を増やし、どんな題材でも予測が立てやすくなるよう、練習を重ねていきたいと思っています。 参考資料はどう利用? また、自分の分析結果の検証のため、既に加工されたデータが公開されているウェブサイトを参考にすることができました。たまたま目にした統計資料は、とても扱いやすく、分析の答え合わせに役立ちました。 顧客事例から学ぶ? さらに、業界別の顧客事例を読み込み、自分の言葉で要約することで、各顧客の根本的な課題やその解決策を十分に理解することができました。今後は、この姿勢を仕事にも活かし、何がイシューなのかを意識して考えていきたいと考えています。

データ・アナリティクス入門

データで解く! 成果を上げる実践術

理解を深めるためには? 自分が「なんとなく分かっていた」と思っていたことも、改めて問われると言葉に詰まってしまうことがあります。それは実際には十分に理解できていなかったからかもしれません。分析を行う際には、各要素を比較し、言語化することを意識する必要があります。普段の研修では聞き手に回ることが多かったため、アウトプットするのは不得手でしたが、この学習を通じてしっかりと身につけたいと思います。 データ活用の戦略は? 業務実績データから得られる課題抽出や傾向の把握、戦略立案などに活用したいと考えています。特に、各支社・拠点におけるデータを活用し、問題解決に結びつけていきたいです。また、意思決定の過程では、常に数字に基づいて話すことを徹底し、業務で成果を上げていくことを目指します。 効果的な比較分析法は? データ分析においては、比較分析を徹底する必要があります。それに伴い、できる限り多くのデータを集めることが理想ですが、労力も相当なものになるでしょう。無駄な作業にならないよう、目的やアウトプットイメージ、期限、制約をしっかりと言語化し、伝えることが重要です。

クリティカルシンキング入門

日常で磨くクリティカル思考

具体例で何を感じる? ライブ授業のWeek1以降の振り返りでは、「病院の〇〇するところ」や「ドラッグストアで売っているもの・売っていないもの」といった具体例を通して、人間がどのように思考し、思考しやすいのかを再確認できました。データを活用する際やプレゼンテーションを行う際、まずはイシューを明確にすることが基本であり、その上で切り口を考えるといった手法が重要だと感じました。 疑問はどこから生まれる? また、クリティカルシンキングの考え方を学ぶ中で、自分自身への批評や「本当にこれで正しいのか」という疑問を持つことの大切さを実感しました。上司、部下、顧客、取引先といったさまざまなコミュニケーションの場面で、そして私生活においても、この思考法が活用できると考えます。しかし、講師からも指摘されたように、日々意識して取り入れなければ、せっかく学んだ内容が定着せず、元の状態に戻ってしまうリスクもあることを実感しました。 習慣化は可能か? 今後は、このクリティカルシンキングを習慣的に活用できるよう、日々の業務や生活の中で意識的に取り入れていきたいと考えています。

データ・アナリティクス入門

広い視野で挑む仮説の極意

仮説全体はどう捉える? 仮説の立て方について学んだ内容の中で、まず複数の仮説を設定し、その網羅性を高めることが重要であると感じました。一つの視点に偏らず、様々な可能性を検討することで、問題の全体像を見失わないアプローチが実現できると思います。 裏付けデータはどう検討? また、仮説を裏付けるデータだけでなく、反証する可能性のあるデータも収集する必要性を学びました。データの集め方一つとっても、どの側面から情報を集めるかによって、結果の信頼性が大きく変わるため、留意する点が多いと感じました。 他部門への影響はどんな? さらに、全社的な課題の場合、仮説は自分の部門だけに留まらず、他の部門にも影響を及ぼす可能性があるため、その立て方には工夫が求められると実感しました。たとえば、営業利益の低下という問題は、売上減少だけが原因か、製造ラインの効率低下が関与しているのかといった複数の視点から検討する必要があります。局所的な原因にとらわれず、マクロな視点で多層的かつ複眼的な仮説を立て、各部門としっかりコミュニケーションをとることが、問題解決に向けて不可欠だと考えました。

クリティカルシンキング入門

データ分類で在庫管理を効率化する方法

実践で見えた真実は? 学んだこととして、まずは実際に手を動かし、様々な切り口でデータを分類してみることの重要性がありました。その際、5W1Hといった手法を活用しつつ、単純に機械的に分けるのではなく、どのように分ければ意味が出てくるかを考え、仮説を立てることが大切だと理解しました。仮説を立てることで傾向を捉えることができますが、その傾向だけにとらわれず、他に絶対的な傾向はないのかをさらに異なる視点から分析することも重要です。 在庫管理に活かす? 自分の業務では、販売会社の在庫や売上の管理にこのアプローチが役立つと感じました。具体的には、在庫が増える要因や売上が変動する要因の分析に応用できると考えています。例えば、在庫削減の計画を検討する場合、在庫増加の原因を詳細に分析することが、具体的な対策につながると考えています。 売上計画はどうなる? 私が担当している地域では、計画通りに販売が進まないことで在庫が増えているという現状の課題があります。その打開策を考えるために、どの商品がどの顧客先で計画と実績に差が出ているのかを分析し、問題を特定したいと思っています。

データ・アナリティクス入門

明確な目的が生む比較の力

分析の本質は何だろう? 「分析の本質は比較である」という考え方に大変感銘を受けました。最初に何を明らかにしたいのかを明確にすることで、ある要素がある場合とない場合とを比較し、効果や違いを正しく捉えることができる点は、非常に実践的で応用の幅が広いと感じています。また、生存者バイアスによって見えなくなる情報への注意も、自分の視野を広げる大切な学びとなりました。分析においては、目に見えるデータだけでなく、見逃されがちな要素にも着目し、比較の対象を冷静に選ぶ姿勢が重要なのだと実感しました。 出発点は何だろう? これまで、製造現場におけるデータ収集や可視化の業務では、まずデータを集め加工することに注力していました。しかし今回の学びを通じて、分析の出発点は「何を明らかにしたいのか」「誰がどんな情報を求めているのか」を明確にすることにあると強く感じました。顧客や現場のニーズを正確に把握した上でデータを選定・加工することで、より有効な可視化と示唆が得られると考えます。今後は、単なるデータ処理に留まらず、目的に立ち返りながら業務に取り組む姿勢を一層意識していきたいと思います。

データ・アナリティクス入門

分析の力で新規事業を成功へ導く

分析とは何かを考える 今週、私が学んだ点は以下の2つです。 1つ目は、「分析とは比較すること」です。比較しなければ、その数字から何が言えるのかわからず、数字を出すだけではあまり意味がありません。 分析目的の明確化が重要 2つ目は、「分析の目的を明確にすること」です。何のためにデータ分析を行うのか、それを行うことで自分は何を成し遂げたいのかを明確にしなければ、データの整理や加工の方法もわかりません。 実証実験の進め方と意義 私の部門では新規事業開発を担当しており、日本各地で実証実験を行っています。実証目的に紐づいたデータ取得の設計と分析・評価を行い、実証結果を基に次の方向性を探る際には、数字を用いて周囲に納得感のある説明を行うことが求められます。 データ分析のスキルをどう向上させるか 現在の業務の方向性を整理し、実証実験の意義と目的を改めて明確にすることが重要です。また、データ分析を専門とする教授とディスカッションしながら実証実験のデータ取得方法を設計し、実証後のタイミングで有効なデータを用いて自身で結果を評価できるようにすることが目標です。

データ・アナリティクス入門

データ分析の新常識!実践で学んだ秘訣

データ分析の比較とは? Week1で「分析とは比較である」と学びましたが、Week6の実践演習でその意味を実感しました。 アンケートの対象者を選定する際、データ収集後の分析においてどのような比較を行うかを念頭に置くべきだということを改めて感じました。また、分析を行う前段階で、最終的なアウトプット(例:切り口やグラフ等のビジュアル)をイメージしておくことの重要性も学びました。 収支分析のステップは? 収支分析を行う際には、常に様々な切り口を意識することが必要です。切り口を考えた後、「what→where→why→how」とステップごとに分析を進めることも重要です。その結果、確度の高い分析が可能になると感じました。 このような様々な切り口と「what→where→why→how」というステップを意識し続けることで、分析結果を効果的にアウトプットできるようになります。また、数値の性質やグラフについての理解を深めるために探求を続けることも重要です。実践を通じて学んだことを自分の活きた知識とするとともに、書籍や研修を通じてさらに知識を深化させていきたいと思います。

データ・アナリティクス入門

多角的視点で解くデータの謎

どんな事例が印象的? 具体的な事例をもとにした演習を通して、どのようにデータ分析を進めるかを学びました。ひとつの事例を取り上げ、「Where=どこに問題があるか」を徹底的に考察する過程では、自分では思いつかない切り口でデータやグラフを眺め、問題箇所を明確にしていく流れが特に印象的でした。この経験を通じて、物事を多角的に捉える重要性に気付かされました。 問題解決はどう進む? また、この講座では、問題解決のステップを活用して意味のあるデータ比較ができる方法を学びました。学んだ手法は、データ分析にとどまらず、日々の仕事で直面するさまざまな問題にも応用できると感じています。今後は、以下のステップを活用し、効果的な解決策を見出していきたいと考えています。 各ステップをどう確認? ①【What】「何が問題か?」──直面している課題や状況を明確にする ②【Where】「どこに問題があるか?」──問題の箇所を絞り込む ③【Why】「なぜ、問題が起きているのか?」──その原因を分析する ④【How】「どうするか?」──原因に対する有効な解決策を検討する

クリティカルシンキング入門

問いが導く学びの扉

問いの意義は何? 「問い」とは何か?まず、分析を始める際にまず重要なのは、どの問いに答えるために作業を進めるのかを明確にすることです。データを目の前にすると、無意識に手を動かしてしまいがちですが、目的となる問いをはっきりさせることで、分析の方向性がぶれないようにします。 伝達工夫はどう? 次に、情報を他者に伝えるための工夫が求められます。資料作成においては、キーメッセージが伝えたい順序に沿って配置されているか、また、強調したい部分が意図的に表現されているかを確認し、工夫することが大切です。 課題整理はどう? また、現状の課題や問題点が不明瞭なために混乱してしまうこともあります。そのような場合には、改めて「問い」を明確に定め、状況にあるデータを正確に分解し、解決への糸口となるよう整理することが求められます。 意見共有は大事? さらに、自分の考えに偏りが出ないよう、メンバーと共有して意見を取り入れる工夫が必要です。また、情報を他者に伝える際は、ピラミッドストラクチャーに沿って論理的に整理し、相手に分かりやすく伝えることを心がけたいものです。

データ・アナリティクス入門

数字に潜む新発見と未来への一歩

平均値の使い方は? 単純平均だけで判断すると、外れ値の影響でデータの見誤りが発生する可能性があることに気づきました。これに対して、加重平均や幾何平均についてはこれまで自分自身で使った経験がなく、今後習得していきたいと考えています。これまで、適材適所の数値の出し方をあまり意識していなかったという反省もあります。 データ分析はどう? セミナーの申込者数やWebからのコンバージョンの分析において、年商別や案件化金額などのデータを、散らばりや加重平均、幾何平均を取り入れて比較分析したいと考えています。具体的には、同じソリューションのセミナー同士や異なるソリューション間の比較、時期を分けた比較、Webとセミナーでのリードの比較など、さまざまな切り口で分析を行いたいと思います。 比較検討の進め方は? まずは、参加者が多く、分析しやすい直近のセミナーを対象に、年商別の申込者数や過去のセミナー参加数を、前回同じテーマで実施したセミナーと比較してどのような変化があるかを検討する予定です。その結果を踏まえ、他のソリューションのセミナー分析にも展開していく狙いです。
AIコーチング導線バナー

「自分 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right