データ・アナリティクス入門

視野が広がる!見える化の奇跡

視野はなぜ狭く? 全回のライブ授業を通じて、自分の傾向が明確になりました。経験則の範疇で物事を考えてしまうために、視野が狭くなっていることを実感するとともに、かつて学んだ内容も十分に活かしきれていないことが分かりました。 見える化に何を感じ? 授業で取り入れられていたプロセスやビジュアル化の工夫は、自分の思考の幅を広げるヒントになりました。一旦自分の発想を見える化することで、整理もしやすくなると感じました。 戦略はどこへ向か? 業務において、データ分析から戦略策定への取り組みは欠かせないため、今回の学びを活かしながら注意点を整理し、実際に見直していきたいと思います。実績データを時系列で比較するなど、どの視点に重点を置くべきか、どこまで深堀りすべきか、その必要性を常に問い直す姿勢で取り組むことが大切だと感じました。 図解は何の助け? 今後は、初期段階からのビジュアル化を心がけ、振り返りながら適切な切り口や判断基準を繰り返し検討していきたいと思います。また、これまであまり活用してこなかったグラフ化にも意識的に取り組み、仮説も含めた考察を関係者と共有し、ディスカッションへと発展させていきたいです。

クリティカルシンキング入門

データ整理で見えた多面的な視点の新発見

データはどう活かす? データをグラフ化することで、共有者全員が視点の漏れを確認でき、短時間で状況を把握できることに気付きました。角度を変えて情報を整理することで、複数の視点を生み出すことができました。また、留意点として、分解する際には、思いつくことから手を付けるのではなく、「When」や「How」といった枠組みで考えることで、漏れのない結論にたどり着けることを実感しました。 部門承認はどう取得? 研修計画を部門承認に使用する際には、実施方法や日程、参加者の切り分けなど、多くの検討事項があります。部門の承認を得るために、目的に沿った切り分けの考え方を使う必要があります。そして、部門説明の際には、即座に理解できるわかりやすさや、視覚的に理解が進む資料を重視したいと考えています。学んだグラフ化を使用する機会は少ないかもしれませんが、情報が伝わりやすい図の検討が重要です。 資料作成の工夫は? 具体的には、切り口や切り分けの考え方を一枚にまとめ、自分なりの順序を整理します。そして、研修計画の検討事項ごとに切り分けを行い、提案資料を作成する際には、数字や表ではなく、図で示すことができるよう工夫してみます。

戦略思考入門

集合知を活かした新戦略の発見

競合データをどう見る? マーケティング部門との会議で競合分析のデータを基にした今後の戦略方針が示されることがありますが、彼らがどんなデータを元に議論しているのか、理解できました。今後はフレームワークを意識して使うことを心がけたいと思っています。そして、多くの人が一緒に考えることで生まれる「集合知」が非常に有効であることも学びました。 フレームの真実は? これまで、フレームワークは営業部門専用のものとの先入観がありましたが、実際には面接の事例のように幅広く活用できることを知りました。新商品の投入には大きな時間と費用がかかる業界において、自社の強みを活かせる分野を強化し、他社がまだ参入していないニッチな分野にも積極的にチャレンジしていきたいと思います。 計画はどう伝わる? また、プロジェクト計画を策定する際には、自分たちがやりたいことだけをリストアップするのではなく、経営者の視点から見た利益や強みを活かす方法、さらには将来的な変化による影響も考慮していきたいと考えています。チーム会議の頻度が高い中で、「集合知」の重要性をメンバーに共有し、より活発なブレーンストーミングを促進していきたいと思います。

クリティカルシンキング入門

論理とデータで切り拓く変革

本当に原因を掴めた? クリティカルシンキングの動画を通して、問題が起こった際に分析せず「なんとなく」原因を特定し、「とりあえず」の解決策に飛びつくことが非効率であり生産性を下げるという点を再確認しました。 思考の見直しは? 自分の思考偏りや思い込みに気付くとともに、WHAT、WHERE、WHY、HOWといった観点から要素を分解し、数値などの客観的データに基づいて対応策を検討する必要があると実感しています。 前例に縛られている? また、学校内のさまざまな業務では「前例踏襲」や「経験則」に頼る場面が多いと感じています。そこで、問題解決のためには客観的データに基づき、論理的かつクリティカルに考える文化を醸成することが、今の時代にふさわしく、生徒も教員も共に多く学べる環境作りにつながると考えています。 実践はどう進める? 学んだ知識を実践に移すことが重要です。特に、これまであまり取り組んできなかったデータをグラフで示す方法にも積極的にチャレンジしていきたいと思います。 ツールの使い方は? さらに、ロジックツリーを日常の思考訓練のツールとして活用していくつもりです。

データ・アナリティクス入門

論理と実践で描く解決ストーリー

数値に隠れた真実は? 本単科で学んだ内容を振り返り、まず、データ分析は単なる数値の羅列ではなく、比較対象を明確にした上で、数値に裏付けられた論理的な問題解決の道筋を描くことが大切であると再認識しました。 問題解決の流れは? また、問題解決にあたっては、思いつきの分析ではなく、問題解決の4ステップを明確にし、解決までのストーリーをしっかりと立てて実行する必要性を学びました。健康経営推進でのKGIやKPIの設定、戦略の見直し、効果的な施策の検討、さらには働きやすさや働きがいの醸成に向けた取り組みとして、男性の育休取得率と女性活躍の相関関係の検証、介護と仕事の両立支援に関する現状把握と課題の抽出、効果検証といった事例を通して、その具体的なアプローチ方法が示されました。 効果的なスキル向上は? 加えて、Excelを用いた関数活用やグラフ作成のスキル向上、可視化資料を活かした説得力のあるプレゼンテーションの訓練が、実践的な分析や提案活動に直結する点も印象的でした。自分が出した解決案を俯瞰的に確認し、他者の意見を取り入れてブラッシュアップすることで、より実効性のある提案が実現できると感じました。

クリティカルシンキング入門

イシュー特定で成果を最大化!

イシューの意義は? クリティカルシンキングを通じて最も得られた学びは、「イシューを明確にすることの重要性」です。解決策を決定する際にイシューが不明確なままだと、結果的に意味のある成果が得られない可能性が高いと感じました。答えにたどり着くためには、ピラミッドストラクチャーやデータ分析といったスキルを駆使することが効果的であることを学びました。 スキルはどう活かす? これらのスキルは、例えば講演会の企画や医師に対するプロモーション活動計画の作成、チームでの会議、社内メールの作成、上司への活動報告など、さまざまな場面で活用できます。重要なのは、まずイシューを特定してから活動内容を決定することであり、この点を自分自身だけでなく周囲にも意識させていきたいと思っています。 データの切り口は? 業務において、まずは関連データの分析に取り組むことが必要です。データをただ見るのではなく、異なる切り口で分解し、数字から見える問題を明確にします。その上でイシューを特定し、活動内容を決めることが肝心です。さらに、なぜそのような内容になったのか、その背景についても説明を欠かさないように心がけたいと思います。

クリティカルシンキング入門

切り口と仮説で視野を広げるデータ分析学び

数値分析の固定概念を超えて 分析とは、数値を分けて検証することと認識していました。固定概念があり、年齢層は10代ごとなど決まったフレームで対応する傾向がありましたが、データによって柔軟に対応すべきと感じました。今後は、様々な切り口で分析を行うことを決めました。ただし、行う量が多すぎると時間ばかり浪費するので、仮説と検証を繰り返し、仮説力を高めるように努めます。 どのように視野を広げる? 数値検証は、どの分野でも必要です。自社においても多くのデータがあるため、切り口と仮説を意識して活用していきます。数値を扱う部署にいたため、頭が固くなっていると感じていましたが、検証を通じて視野を広げようと思います。会社の中でも分析に期待されている声があるので、この研修を活かせればと考えています。 新規業務にどう備える? 部署が変わってから数値検証やグラフ作成の機会が減少していますが、この研修を受けて学び直し、今後の新規業務に備えたいと思います。ミーシーについては知識としては理解していると感じても、実際に行うと漏れやダブりが発生しがちですので、今後は自分の手法が本当に正しいか常に意識して進めたいと思います。

データ・アナリティクス入門

営業成績アップのカギは仮説立てにあり!

仮説を立てる重要性とは? 原因を見つけるためには、仮説を立ててデータを収集することが重要だとWeek4で学びました。仮説は一つに絞らず、複数立ててから絞り込むことが大切であり、仮説同士に網羅性を持たせる必要がある点に納得しました。しかし、網羅性や複数の仮説を考え過ぎると時間がかかるため、バランスを考えることが重要です。 営業成績向上の仮説は? 例えば、自分の営業成績が悪いときに成績を上げることを目的とした場合、様々なポイントで仮説を立てられます。行動数が足りない、提案の質が悪い、ニーズが大きいクライアントに当たっていないなど、様々な仮説が考えられます。網羅性の確認には他のフレームワークを活用することが有効です。 データと仮説の精度を高める方法 具体的には、まず仮説を立てるために自分の営業プロセスを分解し、その過程でフレームワークを調べたり、上長とディスカッションを行ったりして網羅性を高めます。また、過去の営業成績からデータを抽出し、仮説の精度を上げるための材料にします。もし不可欠なデータが不足している場合は、将来的にはデータの取得が可能となるように社内で提案することも考えられます。

戦略思考入門

店舗戦略に効く規模経済の極意

規模効果の見極めは? 規模の経済性に関するケースを通じて、具体的な状況下でその有効性を判断する際には、自分のビジネスの特性や置かれている環境、さらに利用するビジネスフレームワークを十分に理解することが重要だと学びました。十分な理解なく実行に移すと、誤った判断をしてしまう危険性があるため、現状にどの法則が適用できるのかを見極め、具体的なフレームワークと比較しながら判断する必要があります。 店舗計画の判断は? また、自分が担当する店舗で商品を計画する場合、単に利益が出ない、あるいはコストがかかるといった理由だけで製造量や発注量を減らしたり、品揃えを削減したりすると、その商品を求めて来店している顧客の支持を失い、店舗全体の利便性が低下して客数が減ってしまう恐れがあります。 品揃えの影響は? そのため、品揃えを検討する際には、各商品分類の欠落がないかどうかや、販売実績が低下して消費者の来店に影響を与えていないかを見極める視点が必要です。さらに、公開されているPOSデータでリピート率の高い商品や、自店舗が所在するエリアごとの傾向も参考にしながら、より実践的な判断を行っていきたいと考えています。

戦略思考入門

効率的な思考と行動で成果を上げる方法

仮説思考で効率化を図るには? 仮説思考の重要性について理解が深まりました。一定の仮説を持って思考を進めることで、効率的なアクションが取れる一方、データを疑う姿勢も忘れてはならないと感じます。GAiLのワークで出てきた「時間あたりの利益」は、自分なりの仮説を持つ良い例だと捉えました。 どうやって惰性を打破する? 捨てる難所と克服のポイントについても学びました。 まず「捨てる方が顧客の利便性を増す」という発想が最も重要だと感じました。これはまだ自分には十分に考えられていない部分ですが、重要な視点であると思います。 次に「昔からの惰性をやめる」についてです。当初、中途入社の新参者であったころの視点を持つことができなくなりつつあります。自分には持てない視点を、新参者に話を聞くことで補完していきたいと考えています。 ビジョン設計で成果を出すには? そして「餅は餅屋」に任せるためのビジョン設計やディレクションが前提になるという点です。経験が少ない状況において、どう具体的に実現するかをしっかりと考えていきたいと思います。 これらのポイントを踏まえ、日常の業務に生かしていきたいと思います。

データ・アナリティクス入門

仮説と試行錯誤で切り拓く未来

仮説構築はどう始める? 仮説を立てる際には、3Cや4Pといった切り口を活用し、情報を整理することで仮説ストーリーを構築しやすくなります。仮説は結論仮説と問題解決のための仮説に分かれ、検証にはデータ収集が不可欠です。その際、誰にどのように聞くかを工夫することで、仮説に沿ったデータが得られると感じました。 計画検討は何を確認? お客様の活用コミュニケーションの計画を検討する場合、これまでの施策結果の課題、どの部分で課題が生じているのか、その原因、そして施策変更による改善策について、段階的に細分化して考える必要があると認識しました。仮説の流れは「What → Where → Why → How」という順序で検討することで、論理的に整理されやすいと感じています。 検証実施はどう進む? 一方で、自分の組み立てた仮説が正しいかどうかについて、常に不安を感じることがあります。授業では、仮説に疑問があってもまずは早く検証を回すことが大切であると指導いただきました。しかし、実際にその検証を迅速に進めるためには、どのようなアプローチが最適なのか、今後も試行錯誤しながら検討していきたいと思います。

データ・アナリティクス入門

仮説で切り拓く受講生の挑戦記

分析って何を探す? 分析とは、物事を比較しながら目的意識を明確にし、仮説を立てつつ進めるプロセスです。分析を効果的に進めるためには、「What(何を)」「Where(どこで)」「Why(なぜ)」「How(どのように)」という手順に沿うと良い成果が得られる可能性があります。 フレームをどう活かす? 特に「Why」の段階では、ケースに応じて既存のフレームワークを活用することで、より深い洞察が得られるでしょう。また、分析結果をグラフなどで見える化することにより、その説得力は一層増します。 障害の本質は何? 障害分析においては、過去の事例を参考にしながら、現時点では見えていない問題点を抽出することが重要です。これまでは既存の数字を並べるだけで手探りだった部分も、今後は「何を明らかにするか」という目的意識を持って進めたいと考えています。 データ活用はどう? まずは、障害発生件数の減少を目指すために、どのようなデータが必要かを検討し、過去の事例から現在の課題を洗い出すことから始めます。その上で、得られた情報をもとに自分なりの仮説を立て、分析作業を着実に進めていきたいと思います。

「自分 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right