クリティカルシンキング入門

軸を変える!データの新発見

最初のLIVE講座の印象は? クリティカルシンキングの総まとめの週では、最初のLIVE講座で「自分の思考の癖を知る」というテーマが特に印象に残りました。その後のLIVE講座では、week1~5で学んだ知識を活かしながら、2つの問題に取り組み、その中で数字の並びを見ると細部に過度に意識が向いてしまう自分の癖に気づかされました。そこで、まず問題全体を把握し、数値を見える化する、軸を変えて視点を変えるといった手法を段階的に取り入れることの大切さを実感させられました。 数字分析はどう進む? さらに、数字の羅列や傾向を分析する際、現実の業務の中でも工数の見直しやシステムの性能分析などが必要になる状況を思い起こしました。今回学んだデータ分析のツールを活用すれば、初めに考えすぎず、さまざまな角度からデータの整理と視覚化を行い、その上で仮説を立て補足説明を探すという実践的なアプローチが可能だと感じました。 どのデータ視覚化? 今後は、単に収集したデータに基づいて行動するのではなく、まずはデータを多角的に分類し、視覚化する作業を徹底して行います。そして、その中から得られる示唆をたくさん書き出し、グループ化や抽象化を通じて整理し、自分の視点をさらに深める検討を進めていきたいと思います。

データ・アナリティクス入門

視点が変わる数字の物語

視点と標準偏差は何? 「分析は比較である」という考えから、視点やアプローチの違いが明確に見えてくることを学びました。数学が苦手な自分にとっては難解な点もありましたが、標準偏差の活用方法などを理解できたのは大きな収穫です。また、単純平均、加重平均、幾何平均、中央値といった代表値と、散らばりを示す標準偏差の違いについても理解を深めることができました。 集約方法はどうなっている? これまではエクセルで作成できるグラフからなんとなく情報を把握していたのに対し、今回体系的に数字の集約方法を学んだことで、今後はどのように数字を集約すべきかを意識して活用していこうと思います。特に幾何平均は初めての使用なので、さらに調査を進める予定です。標準偏差についても、その考え方から算出方法を追求するのが面白いと感じました。 分析の流れはどう進む? 前回からの繰り返しになりますが、分析のアプローチ―目的の確認、仮説の設定、データ収集、仮説の検証―を守りながら、視点と手法を適切に用いることを今後も意識していきたいと思います。幾何平均や標準偏差はまだ完全に理解できていないため、さらに勉強を重ねる必要があると感じています。テストの品質評価においては、標準偏差や中央値の考え方を取り入れていく予定です。

データ・アナリティクス入門

仮説思考で未来を切り拓く

思考はどう深まる? 毎回、自分の思考が浅く、もっと広い視野を持つ必要性を痛感しています。かつて学んだ3Cや4Pのフレームワークは、今回は思うように活用できませんでしたが、仮説思考はデータ分析に限らず、経営戦略やマーケティングなど、様々な分野で常に求められる大切なスキルだと感じています。 偏りをどう避ける? また、データ分析において外部データを活用する際は、あらかじめ結論を決めて自分に都合の良いデータだけに偏らないよう、常に注意する必要があります。複数の仮説を立て、網羅的な視点を持つことが求められる一方で、これまでの自分の取り組みには網羅性が不足していたのではないかと感じています。今後、販売戦略や方針策定の際には、網羅性やデータの客観性・妥当性、すなわち根拠の質を向上させることで、提案の説得力を高めていきたいと思います。 結果の根拠は? データ分析にあたっては、まず仮説の網羅性を重視し、文字や図表などを用いて過不足を冷静に判断できるよう努めます。こうした仮説思考は問題解決の場面で非常に有用であり、社内でのディスカッションにも積極的に活かしていきたいと考えています。また、データ分析結果をアウトプットする際は、その目的や使用したデータの根拠を明確に示すことを心がけます。

データ・アナリティクス入門

ひたむき仮説で未来を創る

仮説設定の意義は? 講座を受講して、データ分析のテクニックを学ぶことができました。しかし、分析そのものはAIに任せることが可能であり、本当に人間に必要とされるのは、データ分析の目的を明確にし、適切な仮説を設定する能力だと実感しました。正解に飛びついてしまいがちな思考停止の傾向を反省し、より良い仮説を見出すために、あきらめずトライ&エラーを重ねていきたいと考えています。また、当たり前を疑う力や、本質的な課題を見極める力、さらには分類のスキルを養うことの重要性も感じました。これらは次週以降や実践の場で活用していきたいと思います。 内部監査の視点はどう? 私は内部監査を担当しており、より鋭く価値ある提案ができるよう、今後はさらに良い仮説を立てる努力を重ねるつもりです。自分の考えや視点の狭さに日々反省しながら、「この事実から何が言えるのか」という問いに徹底して向き合っています。 現場改善はどうする? また、狭い視点に陥らないために、マネジメント視点やクリティカルシンキングを意識するとともに、現場の状況を十分に踏まえた提案ができるよう努めています。具体的には、何が問題なのか、どうすれば現場が改善されるのかをデータを裏付けに、しっかりと整理して提案していきたいと考えています。

アカウンティング入門

店舗と資産を見直して新たな発見

簿記学習のポイントを振り返る 今回の内容は、以前から簿記で学習していたことと重なっていたため、理解するのは比較的容易でした。固定負債と流動負債の違いを理解するのには最初苦労しましたが、学んでおいて良かったと思います。また、1年以上の負債でも通常の営業サイクルに含まれるのであれば流動負債とするという例外ケースは見分けるのが難しいかもしれません。ただし、今のところはそのようなケースにはまだ出会ったことがありません。 自店舗の資産を深く考えてみる 自分の店舗の資産と負債について考えてみました。これまで店舗の資産について深く考えたことがなかったので、良い機会になりました。私の店舗は賃借であり、大部分のPCやシステムもリースや利用料を払って使用しています。顧客データや人材などのソフトな部分は資産と言えますが、基本的にはBSには表記しません。具体的に考えると、資産の特定は難しいものです。 おおよそのBSを作成してみる 次に、自店舗のBSをざっくり作ってみました。正確なものではなく、おおよその仮定で考えられる項目に置き換えてみました。さらに、自社全店舗を合わせたものが会社全体のおおよそのBSになると考えると、若干大雑把な数字になりますが、それでも考えてみる価値はあると思います。

データ・アナリティクス入門

複眼で見る仮説の世界

仮説の重要性は? 学習前は、仮説を立てることに対して、恣意的または無意識に寄せたデータを収集してしまうのではないかという懸念がありました。しかし、今週の学習で、複数の仮説を立てることの重要性を理解できました。仮説はある程度の網羅性を持つべきであり、3Cや4Pといったフレームワークがその考え方を支えていることに納得しました。 仮説と行動の速さは? また、仮説を立てることが物事のスピードに直結するという新たな視点も得られました。これまで、仮説が誤っていた場合はすべてをやり直すゼロスタートになると思い込んでいたのは、仮説を決め打ちにして一つだけ持っていたからだと、自分の在り方から理解しました。 多様性と仮説の関係は? 担当しているダイバーシティ推進の取り組みにおいて、複数の仮説を活用することは、多様な在り方に対する効果的な施策の切り口が一つではないことと合致すると感じます。一方で、大きな方向性や目的の核がなければ、アイディアが散らばってしまうため、その点は常に意識しておきたいと思います。 検証の進め方はどう? 仮説の検証過程では、恣意的な判断を防ぐためにフレームワークに立ち返り、複数の仮説について必ず他者と対話し第三者の視点も取り入れるよう努めています。

データ・アナリティクス入門

データ分析の基本を理解し深堀り

分析の基本を理解しよう 分析は比較であるという基本を理解することが重要です。目的や仮説をもとに分析に取りかかること、そして問題解決のステップ(What-Where-Why-How)を意識することが求められます。仮説を立てる段階から、何と比較するかを考えながらデータを集め、それを加工・集計し、ビジュアル化することで発見につなげるという手順が大切なのです。 仮説立案の重要性 現在の業務では、多種多様なデータが提示されることが多く、闇雲に分析してしまうことがあります。ここで重要なのは、仮説をしっかり立てて分析に取り組む姿勢を忘れないことです。 データ収集から始めよう 今後の業務では、どのデータを集めるかという段階からスタートします。その際に、学んだことを振り返りながら全体の設計に取り組みたいと考えています。 フレームワークの活用法 今回の講座は自分にとって納得感のあるものでしたが、人に説明や指導するにはまだ至っていません。復習しつつ、意識して普段の業務に当たることで、講座で学んだ内容を自分のものにしていきたいです。特に、フレームワークについては知識としては以前から持っていましたが、きちんと使用したことがなかったため、今後は積極的に活用していきたいと思います。

デザイン思考入門

共感から始めるデザイン思考の魅力

人間中心の考え方とは? WEEK1のライブ授業で特に印象に残った点として、共感から始まる人間中心の考え方がありました。また、「万人受けするものは売れない」という教訓から、常に「誰のために作るのか」を念頭に置くことの重要さを学びました。さらに、相手の気持ちなど目に見えない部分まで含めて考える必要があることが強調されていました。そして、自分の感情を色で表現し、それを伝えることの難しさも実感しました。 デザイン思考に潜む魅力 デザイン思考において、優しさや愛情がその根底にあるのではないかと感じ、より興味が湧いてきました。普段、私はtoCの業務に携わっており、満足度や継続利用率の向上に向けたコミュニケーションを行っています。これまではなるべく全員が満足できるものを提供しようと考えていましたが、今後は誰に届けたいのかを意識していきたいと思います。 3月のイベントに向けた準備 3月のイベント開催に向けては、次のステップを考えています。前回の参加者データを確認し、目的に合ったターゲットの再設定を行います。また、データの整理やその理由付けを行い、社内で相談の上最終決定をします。そして、訴求内容を変更し(サムネイルや文言の調整)、開催後には前回との比較や効果検証を行う予定です。

クリティカルシンキング入門

物事の分解で見える新たな視点

思考の偏りにどう向き合うか? この講座を通じて、物事の分解方法や見せ方の基本を学ぶことができました。その中で、自分の考え方には思考の偏りがあることも改めて認識し、常にそれを前提として振り返ることが重要だと感じました。 データに基づく「イシュー」とは? また、問題解決においては、本当に必要なデータとそれに基づく「イシュー」を抑え続けることが求められると実感しました。チームメンバーが同様に問題解決に取り組む際、その課題を特定し、解決策の立案までの流れを明確に説明できるようになることで、自分自身の理解も深まるように努めました。 業務要件定義の重要性 業務要件定義の際には、業務ユーザーが具体的にどのような問題に直面しているのかを分解し、それを言葉にする重要性を学びました。意識的に、このアプローチを用いることで、意思決定を行う際にどこまで網羅的に分解できているか、その対策が本当に有効であるかを十分に議論する必要性を感じました。 課題分解で認識の齟齬を防ぐ方法 特に、業務ユーザーの課題をシステムで解決する場合、課題の分解を丁寧に行い、認識の齟齬がないよう努めることが不可欠であると痛感しました。これらの学びを通じて、問題解決能力の向上に繋がることを期待しています。

データ・アナリティクス入門

フレームで切り拓く実践PDCA術

仮説整理で何が見える? フレームワークを用いて仮説を整理することで、話がよりクリアになると再認識しました。3Cや4Pの視点から現状を見渡すと、どこに弱みがあるか、そしてどこをさらに掘り下げる必要があるかが明確になります。また、既に立てた仮説を裏付けるためだけでなく、客観的なデータの捉え方によって新たな仮説を構築する余裕も必要だという点が大変勉強になりました。 PDCA運用で何が変わる? 自社を取り巻く環境や4Pの側面から弱点を探し、仮説を立てた上で行動すること、そしてその行動にスピードを求めるという考えを再確認しました。PDCAサイクルを高速で回すためには、自分なりのロジックを持ち、行動の根拠をはっきりさせることが重要です。失敗した際には、何が原因であったのかを4Pや3Cの視点で分解し、再度計画を練り直すことが求められると感じました。 次の一手はどう考える? 今後は、週単位で顧客に対する活動内容を整理し、成功例と失敗例を振り返りながら、3Cや4Pの観点で要因を箇条書きにして分析していく予定です。そして、次に取るべき具体的なアクション、理想とするマーケットの姿、そして足りない部分を定量データと実行動作、競合の動向を意識しながら活動を続けていきたいと思います。

クリティカルシンキング入門

イシューを解決する力を磨く旅

イシュー解決はどう可能? 「イシュー、つまり今解決すべき問題を特定し、それを解決する方法を多角的に探ることが重要だと改めて気付きました。その時々に適したイシューを設定することが、仕事を進める上で特に大切です。観光業を題材にしたケーススタディを通じて、データを分析し、課題を把握して解決策をイメージする力を養うことができました。 チームで何すべき? 仕事の場面でもイシューを最初に特定してから解決策を考える、という手順を意識したいものです。チームで仕事をしていると、つい思いついた解決策に飛びついてしまうことがありますが、一度立ち止まりチーム全体でイシューを正確に把握し、それから解決策を考えて行動するようにしたいと思います。 データ分析で分かる? データ分析によって課題を把握し解決策を立てる作業は、POSデータの分析などにも役立ちます。グラフ化やデータの分解などの手法を積極的に活用していきたいです。 チーム会議は有効? 自分のチームでも、解決すべき問題を明確にするためのミーティングを少なくとも週に一度以上行い、チーム全体で方針を共有することを心がけています。POSデータを分析し、わかりやすくまとめることで、メンバー全員が理解しやすくなるよう努めています。

クリティカルシンキング入門

分解でひらける!業務改善の秘訣

分解の意義は? 物事を分解する重要性について学び、状況の解像度が上がり、どこに問題が潜んでいるかが見えやすくなることを実感しました。問題解決にあたり、全体をそのまま捉えるのではなく、各部分に分けて考えることで、より明確な対策が立てられると感じました。 データ分類は何で? 特に、データを仮説をもって分類し、どの切り口で分ければ自分が知りたい情報が明確になるのかを考えるプロセスが印象的でした。層別分解、変数分解、プロセス分解といった具体的な手法を学ぶことで、実際の業務においても、売上やクライアント提案、SNSなどのデジタルメディア戦略に応用できると感じました。 どの対策が有効? 実際の事例として、例えば自分や担当媒体の売上分析において、売上構成を細分化して傾向をつかむと、具体的な対策案をいくつも立てられることを学びました。また、クライアントへの提案では、ありたい姿を数字で設定し、その後、どの変数が大きな影響を及ぼしているかを分析することで、より説得力のあるプランが構築できると実感しました。 実践への自信は? 今回の学びは、単なる理論にとどまらず、自社メディアの成長や日々の業務改善にも直結する方法論であり、今後の実践に向けた大きな自信につながりました。

「自分 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right