クリティカルシンキング入門

問いで切り拓く未来

正しい問いは何? 問いから始めることの大切さを学びました。問いの内容によってその後の考え方は大きく異なるため、正しい問いを設定することが非常に重要です。また、設定した問いが後で忘れられがちであるため、常に問いを意識し続ける必要があります。問いを共有しなければ、議論がうまくまとまらないという点も意識しなければなりません。 どうやって問いを共有する? たとえば、マーケティングでは、まず何を問いとするのかを明確に設定し、メンバーとその問いを共有することが大切です。こうすることで、問いを忘れずに一貫した内容で実践することが可能になります。同様に、会議をファシリテートする際も問いを意識することで、議論が脱線した場合に素早く軌道修正できると感じました。 思考の偏りにどう向き合う? また、今回の学びを通じて、仕事でクリティカルシンキングを意識的に使用し、身につけることの重要性を再認識しました。日本語を正しく使い、データを分かりやすく伝えるとともに、問いから始める姿勢を業務に積極的に活用するよう努めています。そして、自分の思考が偏っている可能性を常に認識し、特に問いの設定についてさまざまな視点から考えられるよう心がけることが今後の課題だと感じました。

データ・アナリティクス入門

仮説と検証で切り拓く成長

問題発見はどう進める? 問題の原因を探るため、まずプロセスごとにアプローチする手法を学びました。その中で、A/Bテストを活用し、仮説を立てた上で実際に検証を重ねる方法が効果的であると理解できました。また、総合演習を通して、これまでの学習内容を振り返り、自分の知識を整理する貴重な機会となりました。 仮説検証は効果的? データ分析においては、目的を明確にし、分析に入る前に仮説をもつことの重要性を再認識しました。分析プロセスを着実に進めるとともに、効果的な切り口でデータを把握することが求められると感じています。取り組んでいるサービスのユーザ活用場面を拡充するためには、利用シーンをプロセスに分解し、それぞれを検証した上で改善策を策定することが必要です。 分析の進め方は? 具体的には、各プロセスに対して適切なデータを条件を揃えて抽出し、抜け漏れなく検証を進めることが求められます。改善策を検討する際には、複数の選択肢を根拠に基づいて検討し、基準を設けることで効果的な施策に絞り込むことが重要です。また、分析作業は複数のメンバーで進めるため、作業開始前に目的や意味合いを共有し、各メンバーが同じ認識で取り組むことにも留意すべきだと実感しました。

クリティカルシンキング入門

データ分析で学ぶ!実践で磨く思考力

結論は本当に正しい? データを扱う際には、まず計算して情報を加工し、複数の視点から分解し、得られた結論が本当に正しいかどうかを疑うことが重要だと学びました。表や数字を眺めて悩むよりも、実際に手を動かして考える方が効果的であると感じています。 調査結果をどう見る? これからは、マーケティング調査の結果を見て、どのようなニーズが存在するのかを理解するために使おうと思っています。これまでは、マーケティング部から提供された考察を読み、データに違和感がなければ納得していました。しかし、今後は得られたデータを自分で加工および分解し、その上で考察してみようと思います。そして、共有された考察が本当に正しいのかについても疑いの目を持つことを心がけたいと思っています。 自分で検証してみる? 今後、調査結果が共有された際には、自分でもデータを一度加工・分解してみるようにします。MECE(Mutually Exclusive, Collectively Exhaustive)を意識しつつ、まずは手を動かして、加工や分解に慣れることを目標とします。そして、得られた考察には常に疑問を持ち、自分の意見を形成したら、他の人にもそれを共有するように心がけます。

クリティカルシンキング入門

データから読み解く顧客満足度の秘密

数字の分析で気をつけるべき点は? 数字を使用して分析する際には、与えられた数字をただ羅列するのではなく、状況に応じて自分で欄を増やしたり工夫をすることが求められます。どのような傾向があるかを分解する際には、仮説を立てるために意味のある分け方をすることが重要です。その際には、情報が漏れたり重複したりしないように注意が必要です。また、ひとつの傾向が見えたとしても、2つ目、3つ目の異なる傾向が存在しないか考えることが大切です。 商談の不満点はどこに? お客様との商談において、どの部分に不満を抱いているのかを分析することに挑戦したいと思います。例えば、お客様に会う前の段階なのか、会った時なのか、などの具体的な場面を考えます。不満の傾向が明らかになった場合、法人であれば業種や従業員数、個人であれば家族構成や年齢など、さらに詳細に検討して仮説を立て、それを実践に移してみたいと考えています。 顧客分析はどう進める? まず、これまでにご契約いただいたお客様や断られたお客様がどのような方であるのかを表にまとめます。そして、ご契約いただいたお客様にはどのような共通の傾向があるのか、断られたお客様にはどのような特徴があるのかを分析してみるつもりです。

クリティカルシンキング入門

スライド作成のコツを学び、効率UP!

データの相関性とは? メッセージと図、グラフなどのデータの相関性について考える際には、まず伝えたい内容と誰に伝えるかを明確にすることが重要です。これにより、作成にかける時間の効率も向上します。 スライド作成の工夫は? スライドの補足的な要素として、矢印、フォント、配置などを有効に活用することは大切です。特に、新入社員向けに年間予算作成方法をレクチャーする際には、図や一般的な用語を使い、文字数を増やさずに分かりやすい資料を作成することを心がけています。 初心者の視点を忘れない 自分が慣れてしまっている内容でも、毎年のレクチャー中に思わぬ質問が出ることがあります。これは、私にとっては当たり前でも、初めての人にはわかりにくい部分があるためです。そうしたフィードバックを忘れずに、資料を日々校正し直していきたいと思います。 スムーズなスライドチェック スライドが完成した後には、必ず読み手の視点で見直し、スムーズに読み取れるかを確認します。もし読み取りづらい場合は、矢印、配色、メッセージ、配置などを再検討します。また、社内外問わず良いプレゼン資料に触れる機会を活かし、コツを学んで自分のプレゼンのバリエーションを増やしていきたいです。

データ・アナリティクス入門

データ視点で学びの成果を実感

アウトプットの重要性は? 学んだことをアウトプットできる場として、最終課題やグループワークの課題に取り組むことができたのは、とても良かったです。講義を受ける前よりも、データを見る際に「何のために」「何を明確にするのか」「どのデータとの比較を行うのか」という視点を持てるようになりました。このような視点を持てるようになったことが、個々の学びが自分の成長に結びついていると感じています。 振り返りの重要性とは? しかし、全講義を通して何を学んだのかと問われた際に、すぐに言葉が出てこなかったのは振り返りの重要性を改めて実感させられました。研修や知識をインプットした後に、そのまま放っておくのではなく、自分が何を学んだのかを振り返る時間をきちんと取ることが大切だと感じました。 学びの定着に必要なことは? また、目的意識を持つことがインプットとアウトプットの質を向上させると感じました。迷った時こそ「何を目的にこの仕事をしているのか」に立ち返ることが大切です。そして、何を学んだのかを人に話したり、紙に書いたりして振り返りを行うようにすること、自分の言葉でインプットした内容をまとめ人に伝えて意見をもらうことが、学びの定着に繋がると実感しました。

クリティカルシンキング入門

問題解決の鍵を握る問いの磨き方

どんな問いから始める? 問いは何かということからスタートする重要性を学びました。どのような問いに答えるために分析を行うのか、その目的を確認することから始める必要があると感じました。この際、問いの妥当性を確認するために、MECEになっているか、視座・視点・視野に偏りがないかなどのポイントを自分でチェックすることが重要だと考えました。 なぜギャップが生じる? 現状の業務における課題としては、私の担当する台湾・香港エリアでの販売台数の低下に起因する過剰在庫問題があります。目指すべき目的は、不動在庫の消化および在庫レベルの適正化ですが、販売が思うように進まず、指標に対してギャップが生じています。このギャップを埋めるために、なぜ現状のギャップが発生しているのかを分析する必要があります。具体的には、カテゴリや客先別に切り分けて、予測と実績のギャップを把握し、それを要因別に分けて考えるという手順を踏みます。 何のためにデータを集める? データ収集については、その前に何のためにデータが必要であるかをしっかり考えてから行動に移します。そして、分析を行った結果をチームや販売拠点の営業メンバーに共有し、具体的な対策を検討することが重要です。

クリティカルシンキング入門

切り口が導く成長のヒント

本質に迫る方法は? 分解を行うことで、新たな気付きや発見につながると感じています。全体像を把握した上で、MECEの原則に沿いながら、目的別、変数別、プロセス別などさまざまな切り口で分類してみると、物事の本質に迫ることができるのです。 切り口の工夫は? たとえ思うような気付きが得られなくても、それは失敗ではなく、「この切り口ではうまくいかなかった」という気付きにつながります。こうした試行錯誤を積み重ねることで、より効果的な分解方法を見つけ出すことができると考えています。 戦略はどう立てる? 自分の業務においては、売上向上を実現するために、どの顧客にどのようなメッセージを届けるかという視点で戦略を立てています。また、競合他社の動向を分析する際にも、地域特性や顧客の属性、背景など、複数の角度からデータを整理し、より具体的な傾向を把握するよう努めています。 多角的分析は? 常に物事を多角的な視点で分解し、MECEを意識して取り組むことで、さまざまな側面から物事を見る力が養われると実感しています。データを得た際には、失敗を恐れずに多様な切り口から分析を行い、そのプロセスの中で常に新たな気付きや成長につなげていきたいと思います。

データ・アナリティクス入門

実績分析で気づく新たな視点

グラフを使い分けるには? データの多さや少なさを確認したいときは縦棒グラフ、比較を行いたいときは横棒グラフ、割合を示したい場合は円グラフを使うのが効果的です。用途に応じてこれらのグラフを使い分けることが重要です。目的を明確にした上で分析を行い、最終的に作成する資料が社内外のステークホルダーに感謝されるようなものになると理想的です。 どのグラフが最適ですか? たとえば、担当先ごとの売上や営業所間のメンバーの実績達成率を比較する際には横棒グラフが適しており、担当先のマーケットシェアを示したいときには円グラフが便利です。会議での効果的なアウトプットを意識して、適切なグラフを作成していくことが求められます。また、縦軸と横軸に何を選ぶかによってアウトプットの見方が変わることがあるので、様々な試行を行いたいと思います。 実績分析に時間を割くべき? 毎朝、実績を見る際に、自分だけでなく営業所メンバーの実績もExcelで分析しています。従来のやり方に加えて、グラフ作成にも挑戦しています。縦軸と横軸を従来とは異なる項目にしてみるなど、工夫を凝らしています。この作業にはかなりの時間を要するため、毎日1時間は数字分析の時間を確保しています。

データ・アナリティクス入門

データ分析の新たな視点を発見!

データ分析に必要なスタート地点は? データ分析とは何かと問われたとき、私は即答できない自分に気づきました。しかし、week1で「分析とは比較である」という言葉に出会い、新たにスタート地点を明確にすることができました。これからは、自分が行おうとしている分析が「比較」になっているかどうか、自問自答できるようになりました。さらに、分析を行う目的をしっかりと確認し、自分が伝えたいことに合致した比較ができているかを常に問い続けることを忘れないようにしたいです。 結果的な「比較」に満足していませんか? よくある例として、言われたままにデータを出すことが多かったのですが、特に期末には前期比や前年比を提示するだけで終わっていました。しかし、何を「比較」すればより実態や現状を明確に伝えることができるのかを考えるアイデアが必要だと感じています。 新しい発見へとつながる比較は? たくさんのデータがある中で、売り上げの数字以外にも何か意味のある比較対象を見つけたいと思います。売り上げや数量、売り上げの多い顧客などは一般的な比較対象ですが、それ以外にどのような視点で比較すれば新しい発見につながるのか、色々な分析データを見ながら探していくつもりです。

クリティカルシンキング入門

MECE実践!仮説検証で切り拓く発見

データ分析の意義は? データを分析する際には、元のデータをさらに加工できないかを常に考えながら進めることが大切だと実感しました。また、分析が進むにつれて様々な仮説が立てられるため、その仮説をどのように検証するかを考えるプロセスも重要だと感じています。 検証で何を得た? 仮説と検証を繰り返すことで、新たなインサイトを発見できることが分かりました。 MECEの活かし方は? また、データを分けるときには、MECEの考え方を取り入れることで、効率的なデータの分解と分析が可能になると学びました。今日からは、「モレなくダブりなく」の精神を意識したデータの分け方を実践していこうと思います。 報告で工夫する? 社内の業務データをまとめて報告する機会があった際には、これまでのフォーマットに従った報告だけでなく、自分から先んじてデータを加工し、新たな気づきを得る試みを行いたいと考えています。 全体像の捉え方は? 今後は、業務データを扱う際に、全体像を意識しながらMECEの視点を取り入れて課題に取り組むとともに、単一の切り口にとどまらず、層別の変数やプロセスごとに異なる切り口で全体を見渡す意識を持って取り組むようにしていきます。

データ・アナリティクス入門

平均だけじゃないデータの魅力

数字加工のコツは? データ分析のアプローチにおいて、「数字を加工するためのポイント」を学びました。これまで単純平均だけに頼っていた自分に対し、加重平均、幾何平均、中央値など、分析の目的に応じた代表値の捉え方があることを知り、大きな気づきとなりました。 散らばりの見方は? また、標準偏差によりデータの散らばりを見る方法についても、漠然としたイメージから、基本的な考え方や2SDルールの説明を受けることで、より明確に理解できるようになりました。 顧客単価の確認は? 現在、一定の条件下で顧客単価を分析しており、単純平均以外の視点やバラつきの観点からの分析に着目し、これまで手つかずだった部分の解明に取り組む予定です。その際、前回学んだ分析の目的を明確にし、仮説を立てながら検証する手法を実践したいと考えています。 実践方法はどう? 具体的には、以下の点を意識して進めます。まず、初回の学びに沿った手順を振り返りながら、地道に分析に取り組むこと。次に、仮説を立てる際には、数字をざっくりとビジュアル化して全体像を把握すること。そして、代表値や散らばりに焦点を当てた分析を行い、見やすく伝わりやすいグラフなどのビジュアル化にも努めます。

「自分 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right