戦略思考入門

集合知を活かした新戦略の発見

競合データをどう見る? マーケティング部門との会議で競合分析のデータを基にした今後の戦略方針が示されることがありますが、彼らがどんなデータを元に議論しているのか、理解できました。今後はフレームワークを意識して使うことを心がけたいと思っています。そして、多くの人が一緒に考えることで生まれる「集合知」が非常に有効であることも学びました。 フレームの真実は? これまで、フレームワークは営業部門専用のものとの先入観がありましたが、実際には面接の事例のように幅広く活用できることを知りました。新商品の投入には大きな時間と費用がかかる業界において、自社の強みを活かせる分野を強化し、他社がまだ参入していないニッチな分野にも積極的にチャレンジしていきたいと思います。 計画はどう伝わる? また、プロジェクト計画を策定する際には、自分たちがやりたいことだけをリストアップするのではなく、経営者の視点から見た利益や強みを活かす方法、さらには将来的な変化による影響も考慮していきたいと考えています。チーム会議の頻度が高い中で、「集合知」の重要性をメンバーに共有し、より活発なブレーンストーミングを促進していきたいと思います。

クリティカルシンキング入門

論理とデータで切り拓く変革

本当に原因を掴めた? クリティカルシンキングの動画を通して、問題が起こった際に分析せず「なんとなく」原因を特定し、「とりあえず」の解決策に飛びつくことが非効率であり生産性を下げるという点を再確認しました。 思考の見直しは? 自分の思考偏りや思い込みに気付くとともに、WHAT、WHERE、WHY、HOWといった観点から要素を分解し、数値などの客観的データに基づいて対応策を検討する必要があると実感しています。 前例に縛られている? また、学校内のさまざまな業務では「前例踏襲」や「経験則」に頼る場面が多いと感じています。そこで、問題解決のためには客観的データに基づき、論理的かつクリティカルに考える文化を醸成することが、今の時代にふさわしく、生徒も教員も共に多く学べる環境作りにつながると考えています。 実践はどう進める? 学んだ知識を実践に移すことが重要です。特に、これまであまり取り組んできなかったデータをグラフで示す方法にも積極的にチャレンジしていきたいと思います。 ツールの使い方は? さらに、ロジックツリーを日常の思考訓練のツールとして活用していくつもりです。

データ・アナリティクス入門

論理と実践で描く解決ストーリー

数値に隠れた真実は? 本単科で学んだ内容を振り返り、まず、データ分析は単なる数値の羅列ではなく、比較対象を明確にした上で、数値に裏付けられた論理的な問題解決の道筋を描くことが大切であると再認識しました。 問題解決の流れは? また、問題解決にあたっては、思いつきの分析ではなく、問題解決の4ステップを明確にし、解決までのストーリーをしっかりと立てて実行する必要性を学びました。健康経営推進でのKGIやKPIの設定、戦略の見直し、効果的な施策の検討、さらには働きやすさや働きがいの醸成に向けた取り組みとして、男性の育休取得率と女性活躍の相関関係の検証、介護と仕事の両立支援に関する現状把握と課題の抽出、効果検証といった事例を通して、その具体的なアプローチ方法が示されました。 効果的なスキル向上は? 加えて、Excelを用いた関数活用やグラフ作成のスキル向上、可視化資料を活かした説得力のあるプレゼンテーションの訓練が、実践的な分析や提案活動に直結する点も印象的でした。自分が出した解決案を俯瞰的に確認し、他者の意見を取り入れてブラッシュアップすることで、より実効性のある提案が実現できると感じました。

クリティカルシンキング入門

切り口と仮説で視野を広げるデータ分析学び

数値分析の固定概念を超えて 分析とは、数値を分けて検証することと認識していました。固定概念があり、年齢層は10代ごとなど決まったフレームで対応する傾向がありましたが、データによって柔軟に対応すべきと感じました。今後は、様々な切り口で分析を行うことを決めました。ただし、行う量が多すぎると時間ばかり浪費するので、仮説と検証を繰り返し、仮説力を高めるように努めます。 どのように視野を広げる? 数値検証は、どの分野でも必要です。自社においても多くのデータがあるため、切り口と仮説を意識して活用していきます。数値を扱う部署にいたため、頭が固くなっていると感じていましたが、検証を通じて視野を広げようと思います。会社の中でも分析に期待されている声があるので、この研修を活かせればと考えています。 新規業務にどう備える? 部署が変わってから数値検証やグラフ作成の機会が減少していますが、この研修を受けて学び直し、今後の新規業務に備えたいと思います。ミーシーについては知識としては理解していると感じても、実際に行うと漏れやダブりが発生しがちですので、今後は自分の手法が本当に正しいか常に意識して進めたいと思います。

クリティカルシンキング入門

イシュー特定で成果を最大化!

イシューの意義は? クリティカルシンキングを通じて最も得られた学びは、「イシューを明確にすることの重要性」です。解決策を決定する際にイシューが不明確なままだと、結果的に意味のある成果が得られない可能性が高いと感じました。答えにたどり着くためには、ピラミッドストラクチャーやデータ分析といったスキルを駆使することが効果的であることを学びました。 スキルはどう活かす? これらのスキルは、例えば講演会の企画や医師に対するプロモーション活動計画の作成、チームでの会議、社内メールの作成、上司への活動報告など、さまざまな場面で活用できます。重要なのは、まずイシューを特定してから活動内容を決定することであり、この点を自分自身だけでなく周囲にも意識させていきたいと思っています。 データの切り口は? 業務において、まずは関連データの分析に取り組むことが必要です。データをただ見るのではなく、異なる切り口で分解し、数字から見える問題を明確にします。その上でイシューを特定し、活動内容を決めることが肝心です。さらに、なぜそのような内容になったのか、その背景についても説明を欠かさないように心がけたいと思います。

データ・アナリティクス入門

営業成績アップのカギは仮説立てにあり!

仮説を立てる重要性とは? 原因を見つけるためには、仮説を立ててデータを収集することが重要だとWeek4で学びました。仮説は一つに絞らず、複数立ててから絞り込むことが大切であり、仮説同士に網羅性を持たせる必要がある点に納得しました。しかし、網羅性や複数の仮説を考え過ぎると時間がかかるため、バランスを考えることが重要です。 営業成績向上の仮説は? 例えば、自分の営業成績が悪いときに成績を上げることを目的とした場合、様々なポイントで仮説を立てられます。行動数が足りない、提案の質が悪い、ニーズが大きいクライアントに当たっていないなど、様々な仮説が考えられます。網羅性の確認には他のフレームワークを活用することが有効です。 データと仮説の精度を高める方法 具体的には、まず仮説を立てるために自分の営業プロセスを分解し、その過程でフレームワークを調べたり、上長とディスカッションを行ったりして網羅性を高めます。また、過去の営業成績からデータを抽出し、仮説の精度を上げるための材料にします。もし不可欠なデータが不足している場合は、将来的にはデータの取得が可能となるように社内で提案することも考えられます。

戦略思考入門

効率的な思考と行動で成果を上げる方法

仮説思考で効率化を図るには? 仮説思考の重要性について理解が深まりました。一定の仮説を持って思考を進めることで、効率的なアクションが取れる一方、データを疑う姿勢も忘れてはならないと感じます。GAiLのワークで出てきた「時間あたりの利益」は、自分なりの仮説を持つ良い例だと捉えました。 どうやって惰性を打破する? 捨てる難所と克服のポイントについても学びました。 まず「捨てる方が顧客の利便性を増す」という発想が最も重要だと感じました。これはまだ自分には十分に考えられていない部分ですが、重要な視点であると思います。 次に「昔からの惰性をやめる」についてです。当初、中途入社の新参者であったころの視点を持つことができなくなりつつあります。自分には持てない視点を、新参者に話を聞くことで補完していきたいと考えています。 ビジョン設計で成果を出すには? そして「餅は餅屋」に任せるためのビジョン設計やディレクションが前提になるという点です。経験が少ない状況において、どう具体的に実現するかをしっかりと考えていきたいと思います。 これらのポイントを踏まえ、日常の業務に生かしていきたいと思います。

クリティカルシンキング入門

偏りを超えた新しい気づき

なぜ偏った視点に気づく? 物事を考える際、人間はつねに偏った見方をしてしまうという現実を意識しています。その偏りこそが「ほかには何があるのだろうか」と自分に問いかけるきっかけとなり、課題に取り組む前にまず問いを立て、その答えを導き出すプロセスが大切だと学びました。また、相手に伝えるときは正しい日本語を使い、伝える手順を踏んで具体的な理由を添えることが必要だということも理解しています。 どう伝えると分かりやすい? 顧客との会議や提案の場面では、まず問いを明確にし、事前に参加者と共有することが重要と感じています。その結果、伝わりやすい資料作りや話し方を工夫することで、常に重要なポイントに焦点をあてたブレのない進め方が可能になると考えています。 何を合わせるべきか? さらに、自分の常識は会議参加者の常識と必ずしも一致しないことを認識し、まずは前提条件を合わせる姿勢が求められます。その上で、議題となる問いを全員で共有し、話が脱線しそうな場合には常に問いに立ち返って軌道修正を図ります。そして、情報を収集しデータを分解することで、相手に伝わりやすい形の資料を作成する努力を続けています。

データ・アナリティクス入門

データ分析で広がる新たな視点と可能性

データの深意を探るには? 各データを深く掘り下げ、その背後に何が見えるかを考えることが重要だと感じました。数値からクリック率やコンバージョン率を計算することで、新たな視点から現状を考察できると思います。また、問題に関連する要素とそうでない要素を分けて考える対概念や、適切な判断基準を設けて各案を評価する過程の重要性を学びました。常に思考の幅を広げることを意識することが大切だと感じます。さらに、A/Bテストを行うことで結果を比較でき、適切に検討を進められることも分かりました。 学んだ知識はどう活かす? 自分の業務にすぐに活用できるかはまだわかりませんが、今週学んだデータの応用や対概念の考え方は役立ちそうです。3W1Hのステップを繰り返しながら、丁寧に分析していくことが大切だと改めて感じました。 採用手法は最適か? 実行可能な業務として、採用活動にもこの手法を取り入れられるのではないでしょうか。採用ページのクリック数と応募者数のデータを取得し、ファネル分析や離脱ポイントを特定した上で、A/Bテストを実施すれば、最適なコンテンツや応募フォームを判断できると思います。

クリティカルシンキング入門

思考を可視化して得る新発見

どうやって問いを共有? 今取り組むべき課題に常に焦点を当て、その問いを周囲と共有し共通認識を持つことが重要です。このため、問いを可視化し、自分の思考に偏りがないかをメタ認知することが求められます。知識のインプット、アウトプット、他者からのフィードバック、そして振り返りを絶え間なく繰り返し、継続していくことが不可欠です。 どんな文章構成? これらの考え方は、文章作成やチーム内での発表、プロジェクトの企画・提案などの場面で活用できます。具体的には、すぐに文章を書き始めるのではなく、まず文章構成を考え、ターゲットとなる読者像に応じた伝え方を工夫します。また、ロジックツリーを利用して思考を明確にし、チームで共有する際には具体的な言葉を使って誤解が生じないようにします。さらに、目的に沿ったデータを選び、その使用意図を常に考慮します。 思考はどう見極め? 日常業務においてこれらのアプローチを心に留め、上質な情報のインプットとアウトプットを心がけ、周囲からのフィードバックを依頼します。思考が偏ることを防ぐため、仕事以外でも常に思考の過程を可視化し、メタ認知を実践することが大切です。

データ・アナリティクス入門

挑戦で切り拓く統計の世界

平均値の使い方は? 普段は代表値や単純平均を活用して概ねの状況把握に努めています。加重平均や中央値も業務の中で用いられている印象ですが、幾何平均や標準偏差に関しては、知識としてはあるものの実践する場面が少なく、具体的な事例を通じて使いこなす機会が今後の課題だと感じています。 ばらつきの見える化は? 特にばらつきに関しては、標準偏差の数値だけでは理解しにくいため、ビジュアル化して整理することが重要だと思います。ビジュアルで示すことで、各切り口からトレンドを読み取りやすくなり、自身だけでなく他者にも理解してもらいやすくなると感じます。 幾何平均はどう活かす? また、幾何平均については、実践での理解を深める努力が必要だと感じます。理解が進めば、標準偏差と組み合わせて顧客分析などの業務において有効な手段になると考えています。 分析に挑戦するには? まずは、苦手意識のある分析手法や未経験の手法に挑戦し、自分自身で試してみることが理解への早道だと思います。職業柄、大規模なデータに触れることもあるため、今回学んだ知識を実務にうまく活かしていきたいと考えています。

データ・アナリティクス入門

データ分析で広がる新しい可能性

仮説とグラフ、どう選ぶ? ライブ授業での演習を通じて、仮説を立てることや知りたいことを明確化する手法を学びました。これは、何と何を比較するデータを集めるべきか、そしてどのグラフを用いて視覚化するかを具体的に知ることに役立ちました。それぞれのグラフには特性があり、自分が伝えたいことに適したグラフを選択できるようになったと感じています。 試験結果はどう活かす? 勤務校では、各時期に行われる実力テストの結果をもとにヒストグラムを作成し、成績の分布を視覚化したいと考えています。これにより、各得点帯の生徒数の変化を確認し、生徒の学習がどの程度定着しているかを把握することができます。また、入学後に行ったアンケート結果を分析し、入学の決め手になった要因をデータやグラフでまとめ、今後の募集活動や広報活動に活かしたいと思っています。 クラス分析をどう実施? まずは、自分の担当クラスを対象に分析を行い、具体的なデータの種類や収集方法、仮説に基づくグラフ作成など、提案方法を試行錯誤してみます。そして、その結果を関係部署に提案し、学校全体の分析へとつなげていきたいと考えています。

「自分 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right