アカウンティング入門

ビジネスモデル理解から財務分析までの学び

ビジネスモデルと数値の関係は? ライブ授業を通じて、「ビジネスモデルをとらえてから数値を読む」ことの重要性を理解しました。特に、具体的な事例を挙げられた際にはイメージしやすく、しっかりと理解できました。この考え方は、自分が現在理解している業界や業種以外のものを読み解く場合にも有効であり、情報を得るところから始めることが重要だと感じました。 学習プランの再構築は必要? 学習プランについては、予想通りに進めることができませんでした。再度プランを立て直し、生活スタイルに溶け込ませるような計画を作ることが必要だと実感しています。習慣化の難しさを改めて感じました。 財務諸表を判断基準にする意義 部品調達先選定や取引継続可否を判断する場面において、一つの判断基準としてP/L(損益計算書)やB/S(貸借対照表)の結果を取り入れることが有効だと考えました。取引先の状態を把握し(倒産リスクなど)、その情報を関係者と共有することで、次のアクションを迅速に起動できるようにしていきたいと思います。また、自社のP/LやB/Sの読み解きも続けていきたいと考えています。 B/S理解をどう深める? まずは、B/Sの理解度を整理することに努めます。その後、他社のB/Sを読み解き、自分なりの答えをまとめることで理解度を深めるつもりです。財務経理部門の方にも協力をお願いし、理解度をチェックする予定です(P/Lの時と同様に)。次に、取引先のP/Lや B/Sを読み解き、理解の定着を図ります。 学んだ知識をどう活用する? さらに、今回学んだことを共有することも考えています。人へ説明することで新たな疑問点が浮かび、それを解決することで理解力が向上すると期待しています。最後に、実務に取り込むための検討を行います。定期的に触れていかないと忘れてしまうため、実務の中で反映していくことが重要だと思っています。

データ・アナリティクス入門

分析で見つけた新たな発見と気づき

比較による効果測定とは? 分析とは、比較することである。まず、分析する項目を整理し、各要素の性質や構造をはっきりさせることが重要だ。何かの効果を測りたい場合、「ある」場合と「ない」場合で比較を行い、分析対象以外の条件も整える必要がある(これは「Apple to Apple」と呼ばれる)。 データ分析の目的と仮説 データ分析を行う際には、まず目的と仮説を立てる。例えば、データ分析の目的は何で、その結果どのような状態を目指すのかを明確にすること。そして、どの項目を分析すれば目的を果たせるのか、その項目をどのようにデータ加工すれば良いのかを考え、具体的な仮説を立てることが大切だ。 適切なデータ加工と表現法 データにはその種類に応じた加工法やグラフの見せ方が必要である。割合で表現するのが適切な場合と、実数(本来の値)で表現するのが適切な場合がある。また、質的データ(数値の大小に意味がないもの)と量的データ(数値に意味があるもの)の違いを見極める必要がある。 人事部門のデータ活用法 人事部門では、健康経営やエンゲージメントに関するデータを扱い、改善に向けた施策を企画することが多い。このため、データを活用して課題解決や目標達成のためのPDCAサイクルを効果的に回せるようにすることが求められる。これまでの施策参加者がどれだけ改善したか、「参加した人の中で●●をした人はより■■だった」といった分析を行うが、このためには、参加者と不参加者の間での比較を行うことが重要だと感じている。 目的設定と議論の重要性 まずは、目的を明確にし、自分自身の思い込みや仮説に偏らず、上司やメンバーと徹底的に議論することが必要だ。次に、課題に対して目指す姿を定量的にKPIとして設定し、現状を把握する。算出するデータに定義と根拠を持ち、それを分かりやすく伝えるスキルを身に付けることも重要である。

クリティカルシンキング入門

ピラミッド構造で学ぶ伝える力

効果的な伝達方法とは? 物事を相手に伝えるためには、以下の要素が重要です。具体的な情景を切り取り、前後の状況を説明し、お互いの考えや状況を的確な言葉で表現することです。これを実現するためには、日本語の正確な使用と、文章を俯瞰して評価する視点が必要となります。しかし、自分の文章を客観的にチェックすることは難しいものです。そこで「ピラミッド・ストラクチャー」というツールを活用するのが有効です。 ピラミッド・ストラクチャーはなぜ有効? ピラミッド・ストラクチャーは、メインメッセージから始まり、キーメッセージやその具体的な根拠を下位に配置することで、論理をピラミッド型に構築します。この方法を使うことにより、作成者自身が論理の妥当性を容易に確認でき、聞き手もどのような理論に基づいて結論が導き出されたかを理解しやすくなります。 報告や提案で気をつけるポイント 特に上司への報告や顧客への提案・交渉の際には活用していきたいと考えています。具体的には、正しい日本語であることに加え、冗長にならないように注意し、ピラミッド・ストラクチャーに基づいてメインメッセージとキーメッセージを明確にすることが求められます。日本語の使用(例えば、助詞や主語・述語、能動態・受動態)について、さらに注意を払う必要があると再認識しました。 MECEを活かしたキーメッセージ構築 また、ピラミッド・ストラクチャーを作成する際には「MECE」(Mutually Exclusive, Collectively Exhaustive)も意識してキーメッセージを組み立てることが重要であると気づきました。報告の際には、事前にピラミッド・ストラクチャーで内容を整理し、対処したいと考えています。また、部下への人事評価のフィードバックにおいても、メインメッセージやキーメッセージを事前に設定した上で対応していきたいです。

クリティカルシンキング入門

問いの光、会議の鼓動

解決すべき問いは? まず、何が解決すべき問いであるか、そして今、何を解決しなければならないのか、なぜそれが必要なのかを明確にすることが重要です。問いを言葉に表すことで、思考や議論がぶれるのを防ぐための基盤が整います。 論点整理はどう? 次に、その問いに対する答えを導くため、論点を整理します。自分自身の偏りに気を付けながら、さまざまな視点から論点を洗い出すことが求められます。その上で、具体的かつ正確な情報をできるだけ収集し、集めた情報を根拠として論点への答えを主張します。このプロセスを繰り返すことで、内容に厚みが生まれ、主張に説得力が加わります。 適切な表現は? また、問いとその答えをシンプルで正しい日本語に言語化することが大切です。メッセージ性のあるプレゼンテーションにするためには、情報の整理だけでなく、聞き手にとって理解しやすい表現方法が必要です。 会議進行はどうする? 会議を主催し進行する際は、まず解決すべき問い(イシュー)を明確にし、その目的を問いの形で参加者に事前に共有します。定例の会議であっても、イシューを提示することは実践すべき基本事項です。さらに、そのイシューを解決するため、複数の視点からの論点を提示し、各参加者に必要な情報を収集するよう指示すると効果的です。多職種が集まる会議では、さまざまな視点からの情報が交わされるため、基礎知識の習得も欠かせません。 議論軌道修正は? これらの準備を整えた上で会議を進行し、議論が逸れた場合には必ず最初のイシューに立ち戻り軌道修正を図ることが求められます。解決すべきイシューを明確にし、複数の視点から検討するために常にイシューリストを作成し、その優先順位を考察します。こうした準備と情報整理により、各論点に対する答えを根拠を持って主張できるようになり、議論が本筋から逸れるのを防ぐことができます。

マーケティング入門

顧客の心を動かす名づけ戦略

なぜ講義は印象深い? 「どう魅せるか?」の講義で最も印象に残ったのは、「商品が顧客のイメージと合っていないと売れない」という点です。たとえば、カップタイプのカレーライスは売れないのに、別の表現に変えることで商品の魅力が伝わり、売れるようになるという事例は、新鮮な学びでした。また、新しい商品が普及するための5条件について考える機会も得られ、とても有意義でした。 ウォークマンの魅力は? 具体例として、ウォークマンについて5条件に当てはめて検証した点が印象的です。まず、従来は家でしか楽しめなかった音楽を持ち歩けるという比較優位が挙げられます。次に、カセットテープという従来の形式を踏襲しており、適合性の面でも障壁が低くなっています。また、使い勝手の良さがわかりやすさにつながり、試用可能性においては既存のイヤホンやカセットテープを利用できたことが有利に働きました。さらに、新しいアイデアが取り入れられていることが一目でわかる可視性も評価でき、ウォークマンは5条件すべてに当てはまることが確認されました。 なぜ名前がわかりにくい? また、自分の商品開発では、まずターゲット市場を絞ることから始めています。これにより自然とセグメンテーションやターゲティングが行われるのですが、よく見受けられるのは、名称が「わかりにくい製品名」になってしまう点です。正確に表現しようとするあまり、長くなったり、差別化ばかりを強調してしまうことが原因です。 どう商品名を選ぶ? 「どう魅せるか?」では、商品名の重要性も強調されています。顧客の視点に立ち、最もイメージと合致する名称が何かを見極めることが求められます。たとえば、展示会の名称を決める際には、顧客が直感的に理解できるかどうかをチェックし、新規事業を生み出す際には、あらかじめイノベーション普及の5条件に照らして検証することが大切だと感じました。

戦略思考入門

有限資源が生む無限の可能性

どんな学びがあった? week1からweek5までの学びを振り返り、有限な資源を効果的に活用するためには、まず情報を収集・整理し、自分の判断軸に基づいて本質を見極めた上で優先順位をつけることが有効だと理解しました。今回の学びは、仕事以外にも応用できる点が特に印象に残りました。これまで分けて考えていた部分が、ライブ授業を通してプライベートの目標や趣味にも活かせることに気づき、限られた時間内で計画を立て、実行に落とし込めると感じました。 情報整理はうまくいっている? 日頃から情報収集や整理を行う際には、有限なリソースを意識し、時間をかけすぎないようアンテナを張っておくことが大切です。また、専門の取引先に情報提供を依頼するなど、工数管理を徹底する姿勢も必要だと考えています。 新制度の判断はどうする? 自社では捨てる・辞めるという行為について比較的寛容な面があるため、新しい制度を導入する際には試験導入を行い、実際に期待する効果が得られるかどうかを慎重に判断することが望まれます。判断軸としては、会社の方向性をしっかり把握し、経験則に頼りすぎないことが重要です。不明な点があれば相手と対話し、真意を確認するように努めたいと思います。 ニュースや情報はどう活かす? また、日常的にニュースや他社情報にアンテナを張るとともに、他社の財務諸表の分析を行うことで、内容によっては定点観測し派生する影響も把握できると感じました。さらに、専門知識を持つ取引先との接点を日頃から持つことも、情報の更新に役立つと考えています。 チームの連携はどう取る? 実行後には、捨てる・辞めるという判断もあらかじめ決めておくことで、スピード感を持って取り組むことができると実感しました。さらに、業務開始時にチームメンバーと判断軸を共有し、認識を統一することが円滑な業務遂行に繋がると感じています。

データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

リーダーシップ・キャリアビジョン入門

振り返りが導く新たな自分

振り返りの大切さは? 今回の学びでは、実際の経験をもとに成長を促す方法やモチベーションの維持・向上について理解を深めることができました。経験から学ぶプロセスでは、まず振り返りを習慣化することが重要であると実感しました。実際に取り組んだタスクを振り返ることで、目指すべき姿とのギャップを確認し、メンバー自身が課題を認識する土台を整えることができるためです。事実に基づいた評価や、明確な基準に沿った成功事例と改善点の双方を伝えるアプローチが、より実践的な学びにつながると思います。 仕事任せは効果的? また、メンバーに仕事を任せる際には、執行責任を持たせリーダーによる干渉を最小限に抑えることで、成長の機会を十分に提供できると感じました。不測の事態への迅速な対応と、組織全体での改善策の検討も重要なポイントです。こうした経験を通して、メンバーが自らの力で気づきを得て、主体的な行動へとつなげる環境作りの大切さを学びました。 モチベーションの鍵は? さらに、モチベーションに関しては、働く理由と働く環境の両面から考えることが必要だと実感しました。金銭的報酬や社会的評価、自己実現の場の提供など、多角的な視点が組み合わさることで、より一人ひとりに適した動機づけが可能になります。理論として取り上げられる各モデルを参考にしながら、相手を尊重し、適正な目標設定や信頼関係の構築を継続的に行うことの重要性を再確認しました。 タスク運用の実感は? 実際のタスク運用では、まずタスクの背景、目的、期限、サポート範囲を明確にし、初めての経験を積む機会として具体的な行動を促すステップを実践しました。タスクの進行状況を確認しながら、適宜振り返りの機会を設け、メンバーが自らの言葉で気づきを表現できるよう導いた結果、若手社員が一人称で考え、主体的な学びを得るプロセスがよりスムーズに進むと感じています。

クリティカルシンキング入門

問いの連鎖が生む未来への一歩

思考はどう鍛える? 知識を思考力に変えるためには、知識のインプット、アウトプット、他者からのフィードバック、そしてその振り返りというサイクルを継続することが必要です。このサイクルを繰り返す以外に、思考力を鍛える手段はないと感じています。 問いは何だろう? 実務の現場では、まず「問いは何か?」という基本的な問いからスタートし、その問いを残すことや共有することが重要です。たとえば、現在何が課題なのかを見極めることは、リーダーにとって最も大きな役割だと考えています。 グラフで効果は? また、数字の力を最大限に引き出すためには、グラフ化するなど視覚的に表現することが効果的です。グラフ化することで、仕事の成果や順位の整理がしやすくなり、目で見て理解できる状況を作り出すことができます。さらに、物事を細かく分解することで、全体の解像度が高まり、適切な分類が可能になると実感しています。 抽象と具体は? 一方で、抽象的な概念と具体的な事例の行き来にはまだ苦労しています。会社目標である「生産性向上」など、抽象的なテーマを具体化できず、言葉にしないと行動に移せず、結果として自分だけでなく周囲も状況を十分に把握できない混乱が生じています。しかし、今後はこの抽象的な問題にもあきらめずに取り組み、改善を図っていきたいと思います。 意見交換で進む? そのために、まずはコミュニケーションを積極的に取ることが大切だと考えています。相手と「問いは何か?」を共有することで、意見交換がスムーズになり、課題の本質が見えやすくなると思います。次に、これまでの取り組みや経験を振り返る時間をもっと確保し、ノートやメモに記録しておくことで、長期的な視点で自己評価を行いたいです。最後に、日々の学習を継続し、新たな知識や情報の獲得に努める姿勢を忘れずに、今後の成長につなげたいと考えています。

データ・アナリティクス入門

データが教えてくれた学びのヒント

代表値で全体像は? データをどのように加工して把握しやすくするかを学びました。まず、代表値を求めることで全体像をシンプルに掴む方法を理解しました。代表値としてよく使われる平均値は、データ全体の傾向を捉える上で便利ですが、ばらつきを反映しにくいという欠点があります。そのため、目的に応じて加重平均、幾何平均、中央値などの手法を使い分ける必要があると感じました。 偏りはどう捉える? また、データの偏りを把握するために標準偏差が有効であることを学びました。標準偏差は、複数のデータが平均値からどれほど離れているかを示し、ばらつきを具体的に表現する指標として役立ちます。 グラフと予測は? さらに、グラフ化されたデータにアプローチする方法も学習しました。グラフ上の特徴的な部分に着目することで、問題点を深堀りしやすくなるという点や、グラフを見る前に予測を立て、その予測と実際のデータを比較する方法が、分析の深化に効果的だと感じました。データ同士を比較し、仮説を立てることで、次に分析すべき方向性が明確になるのだと実感しました。 代表値の使い分けは? 代表値の選び方についても触れました。たとえば、年度ごとの収益を分析する際、単に平均の粗利額を示すのではなく、プロジェクトごとに異なる売上金額を加味して加重平均を採用することで、より適切な表現が可能になると考えました。また、ばらつきの表現に標準偏差を用いることについては、これまであまり意識していなかったため、今後は積極的に活用していきたいと感じました。 学びをどう活かす? 今回の学びを通じて、データを多角的に把握することの重要性を再認識しました。今後は、常に自分の予測と実際のデータとのギャップに注目し、過去のデータや他のプロジェクトのデータとも比較しながら、具体的な仮説を立てて深堀りを進めていきたいと思います。

クリティカルシンキング入門

読んでもらえる資料作成の秘訣

本講義では、相手に「読んでもらえる」文章やスライドの作成に特に注意を払うことが大切だと再認識しました。以下に具体的なポイントをまとめます。 まず、スライドの作成において重要なのは、関連する情報をただ単に盛り込むのではなく、伝えたいメッセージを明確にすることです。相手にとって読みやすい資料を作成するためには、以下の点に注意します。 # グラフの見せ方 - 自分が伝えたいことを基準に、適切な視覚化手法を選びます。 - グラフにする際は、形式や縦軸/横軸、目盛り、単位などの細部に気を配ります。 - 視覚化(グラフ)には、できるだけ慣例に則った方法を用います。 # 文字の表現 - 伝えたいメッセージに合わせた書体や色を使います。 - 文字情報だけでなく、アイコンなどを補助的に用いて視覚的理解を促すことも有効ですが、過度に利用しないよう注意します。 # スライドの構成 - 情報の順番に注意し、図表を情報が出てくる順序で配置します。 - スライドの意図や伝えたいことが分かるように、言葉を添えて補足します。 - メッセージと図表の整合性を保ち、強調したい箇所を意識します。 また、作成した報告資料や管理シート、会議でのプレゼンテーション、メールやチャットでのテキストコミュニケーションなど、様々な業務の場面でこれらのポイントを活用できると考えます。 特に今後意識したいのは、相手に「読んでもらえる」文章やスライドを作成することです。業務に取り組む際には、次の点を念頭に置くよう努めます。 - 自分が伝えたいことを相手に理解してもらうため、伝えたい内容を基準に適切な見せ方(視覚化)を選択する。 - 相手のリテラシーに合わせた言葉を選ぶ。 - 情報を探させない構成にする。 これらのポイントに注意することで、より効果的なコミュニケーションが可能になると確信しています。

クリティカルシンキング入門

踏み込むデータ、広がる発見の世界

データと本気で向き合う? データの用い方や見せ方について再確認でき、また新たな発見を得ることができました。従来は説得力や妥当性を高めるためにデータを利用してきましたが、今回の講習では「データとの向き合い方」自体に踏み込むことで、さらに可能性が広がると感じました。踏み込むというのは、データを分解・分析し新たな発見につなげることを意味します。これまでは、一定の目的が達成できればそれ以上深堀りしなかった自分を反省し、今後は偏りを減らしてより深く分析することで、発見の数や他者への探求の深さ、そして説得力の向上につなげたいと思います。単に表面的な理解で終わるのではなく、データから何が見えているのかを追求していく姿勢が大切だと感じました。 業務で分析は活きる? また、業務においては分類・分解・分析が多くの場面で役立つと実感しました。たとえば、目標設定では、市況や需要予測に基づいてシェアや販売量を設定し、その根拠となるデータや分析結果をもとに説明することで、計画の信頼性が高まります。実施計画においては、マーケティング戦略や営業活動の手段、ターゲット、期待できる効果、効果が現れるまでの時間などを細かく整理し、実行者、評価者、受益者それぞれとの連携を明確にすることが可能です。さらに、効果測定では、シェアや販売量・金額と実施計画との因果関係を明確にして、次のアクションの策定や判断につなげることができます。 分析手法を検討する? こうした業務プロセス全般において、データの分類・分解・分析は有効な手法です。具体的には、説明が必要な場面で、利用可能なデータや参考になる情報がないかを常に意識し、検討することが大切です。たとえば需要予測においては、単に過去の推移を見るだけでなく、季節要因や提供者ごとの特徴も踏まえて分析することで、より実効性のある判断が下せると感じました。

「自分 × 表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right