クリティカルシンキング入門

問いから始まる学びの奇跡

どの問いが重要? 今回の学習を通して、どのような問いを立てるかが最も重要であると感じました。例題からは、問いの立て方がその後の議論に大きく影響することも学びました。また、自分が立てた問いを他者と共有し、同じ問いに沿って議論が進んでいるかを都度確認することが大切であると実感しました。 焦点はどこに? 日々のミーティングでは、最初に何を話すかという問いが明確であっても、気がつけば議論の焦点が見失われがちです。この現象は、問いの共有や振り返りが十分に行われていないことに起因していると改めて認識しました。 何が課題なの? また、テキストコミュニケーションが主な状況では、日々のやり取りの中で問いを立て、その問いに対する答えを準備することが求められます。問いを立てる際、ロジックツリーなどを活用して、今問うべき課題(イシュー)を明確に整理しながら議論を進める方法も有効だと感じました。

戦略思考入門

差別化で自社の未来を切り拓く!

競争優位性の重要性とは? 自社の経営戦略を考える上で、競争優位性を維持するためには差別化が重要であると学びました。特に自社の強みを網羅的に分析するには、VRIO分析が効果的であることを理解しました。 VRIO分析の役割は? また、VRIO分析は来年度以降の事業戦略や営業戦略を検討するうえで非常に有益なツールであると認識しました。顧客との会話で、なぜその商材が必要なのかを深掘りしてヒアリングする際にも、差別化という視点を持つことで、新たな視点から情報を整理できると思いました。 差別化要素の再整理計画 今後は、まず2月中にVRIO分析を実施し、差別化要素を再整理したいと思います。その後、足りないケーパビリティを補うための活動を実践します。さらに、差別化要素の持続的可能性を向上させるために、日本人だけでなくローカルスタッフを巻き込み、要素維持が可能な環境を整備したいと考えています。

データ・アナリティクス入門

仮説で未来を描く学びの一歩

仮説検討はどう進む? 幅広い視野に基づいて複数の仮説を立てることが問題解決につながると理解しました。検討の幅を広げるために、3Cや4Pといったフレームワークを活用し、意図を持ったデータ収集を行う重要性を再認識することができました。 市場の未来をどう読む? また、停滞気味の既存事業にブレイクスルーをもたらすため、将来の市場状況に基づいた仮説をもとに自社があるべき姿を描き、そこに至る戦略や戦術を検討する意義を感じました。この視点は、スタッフ個々の目標設定やKPIの策定にも活かせると考えています。 業績見通しはどう考える? さらに、自部門の過去の業績推移と今後10年間の見通しを基にして、停滞領域の立て直しや注力ポイントの整理を実施し、次年度の部門目標の設定につなげる必要があると感じました。この1年を次の5年、10年のための第一歩とするため、仮説に基づいた変化を実践していきたいです。

データ・アナリティクス入門

数字で読み解く現場の真実

記述統計量はどう見る? 平均値だけでなく、中央値、標準偏差など他の記述統計量を抽出することで、データのばらつきまで確認できる方法を学びました。この手法は、問題解決の際に誤った仮説を課題と認識しないための一助となります。 現状指標の見直しは? 現在の職場では、平均値、最大値、最小値のみが共有される指標となっているため、今後はQ1で述べた内容も加えて集計を行いたいと考えています。数値だけでは状況が把握しにくいこともあるため、ヒストグラムや散布図などのグラフを活用し、視覚的に理解しやすい資料作成を目指します。 実績可視化をどう進める? また、FY24の実績値集計においては、ヒストグラムや散布図を用いて数値を分かりやすく可視化する計画です。具体的な項目としては、電話数と業務歴、トスアップ数と金額、トスアップ数と受注額、さらにはトスアップ数と年度内受注率の関係性を検証していく予定です。

クリティカルシンキング入門

イシューで問題解決の道筋を明確に!

問いはどう考える? まず、重要なのは問い(イシュー)を立てることです。この問いは具体的であり、疑問文の形であるべきです。常に問いを考え続けることが求められます。たとえば、南守島のケースでは、データを様々な切り口で分析し、課題を特定し、その解決策を出すという一連の流れを理解しました。 イシューをどう整理する? 議論が多岐にわたると、イシューを見失うことがあります。そのため、一貫してイシューを意識するのが重要です。議事録のヘッダーにイシューを入れることで、会議の開始時にメンバー全員で確認し、共通の認識を持つように心がけると良いでしょう。 会議はなぜ確認する? 会議の最初には、イシューを全員で確認します。また、議論が逸れた場合には、軌道修正のために再度イシューを確認することが必要です。イシューが複数ある場合には、それを構造的に分解し、それぞれ個別に議論する場を設けると効果的です。

データ・アナリティクス入門

新発見!数値が語る学びの軌跡

代表値の選択は? 代表値について、どのケースでどの値を選ぶのが適切か、具体的な例を交えて理解できました。これまであまり馴染みのなかった加重平均、幾何平均、標準偏差を正しく認識できたことが大きな学びとなりました。 申し込み数の平均は? イベントの日々の申し込み数を算出する場合、たとえばメルマガなどこちらからのアクションがあるかどうかで数値が変わるため、単純平均ではなく加重平均を使用する方法が適切だと感じました。普段見慣れている数字が大きく変化する可能性を実感しました。 目標設定はどう? 今後は、過去の学習内容を振り返り、まず自分が何を達成したいのかという目的を明確にすることから始めたいと思います。その上で、どの代表値を用いるべきかを検討する必要があると感じています。経験や知識が十分でない部分は、AIのサポートも活用しながら、徐々に自分の中に定着させていきたいと考えています。

マーケティング入門

価値ある商品の魅せ方を再考することの重要性

魅せ方とネーミングの重要性とは? 何を売るか、誰に売るか、そしてどう魅せるか(価値がどう見えるのか)が重要であると認識しました。売れない商品は、商品の質だけでなく、魅せ方やネーミングのわかりやすさによっても価値が伝わるかが決まると理解しました。 売れない理由を再検討する意義 自社において売れない商品があるとき、その商品の価値だけを考えがちですが、全く売れない時やモデルライフサイクルが古くなった時には、何を売るか、誰に売るかを再考し、その価値がしっかり伝わっているのかを見直すことも大切だと感じました。 新たな気づきを得る方法は? 売れない商品の価値を見直すにあたり、商品そのものの魅せ方がどう違っているのか(CMやSNS、口コミなどを通じて)を検討し、顧客に価値が伝わっているかどうかを考えることで、新たな気づきを得られると考えています。これを実践する価値があると感じました。

アカウンティング入門

数字の裏側を探る経営レッスン

各社比較で何が分かる? 総合演習では、各社のP/LやB/Sを比較することで、各項目の割合が異なる理由を業界に照らし合わせながらイメージできるようになりました。また、同じ業界内でもどの部分に注力しているか、つまりアピールポイントが異なる点を改めて認識しました。 計画と現状はどう? 自身の事業についても、P/Lが正しく振り分けられているか確認してみたいと考えています。これまで新規リリースのタイミングでしかP/Lを作成していませんでしたが、当時の計画値と比較して現状がどのようになっているのか、また実際に儲けは出ているのかを確認していくつもりです。 内訳を見直すべき? 現在、事業で使用しているP/Lは単にテンプレ通りに入力しているだけで、納得感が得られていません。今後は、各内訳ごとにその項目がなぜ含まれているのかを正確に把握し、説得力のある説明ができるよう努めたいと思います。

データ・アナリティクス入門

4Pの視点で切り開く明日の戦略

なぜ4Pで仮説を立てるの? 4Pの視点から仮説を立てる方法について、これまで十分に実践できていなかったため、改めて基本に立ち返り内容を確認しながら取り組みました。その結果、4Pの視点が非常にやりやすいことを実感し、今後は意識的に活用していきたいと感じました。 なぜ多角的に見るの? また、コンサルティングの現場では、契約状況の因果関係を把握する際に4Pの視点で多角的に分析する必要性を改めて認識しました。リサーチャー時代から苦手としていたこの分野ですが、今後は意識して幅広い視野を持ちながら仮説を構築していきたいと思います。 どうして数値を読むの? さらに、数値データを分析する際は、単に事実を確認するだけでなく、背後にある事象を踏まえて仮説を立て、物事の判断につなげることが重要だと実感しました。3Cや4Pの視点を常に意識し、分析を通じた課題解決の思考力を養っていきたいです。

マーケティング入門

顧客の隠れたニーズを探る挑戦

顧客のニーズをどう探る? 顧客に何を売るべきか考える際には、顧客のニーズを考慮することが重要であることを学びました。特に、顧客自身が気づいていない隠れた欲求を具体的に提案する必要があります。そのために、さまざまな手法を活用することが再認識できました。 時代に合ったブランド戦略 事例を通じて感じたことは、時代や流行に応じて求められるものは常に変わるため、常にアンテナを張り巡らせてユーザーのインサイトを捉えることが重要だということです。現在、私はブランディング施策を担当していますので、時代に合ったブランドを作り上げていきたいと思っています。 日常に潜むニーズを考える 日常の生活の中でも、どのようなニーズがあるのか常に考える習慣を身につけたいと感じました。また、ペインポイントを見つけるという観点はこれまで持っていなかったので、今後はその視点も含めて考えていきたいと思います。

デザイン思考入門

試しながら感じた生成AIの可能性

業務活用はどう進む? 生成AIを業務に活用する動きが進む中、まずは自分の業務で試してみることが大切だと感じています。たとえば、直近ではOpenAIの新しいモデルに関して、ハルシネーション率が高いとされるため、o4-miniを使ってその数値を表にまとめる取り組みを行いました。 混在は何故起こる? しかし、OpenAIのモデルであるにもかかわらず、GPT-4o-miniとo4-miniが混在した表が作成され、そのままでは利用できない結果となりました。ベンチマークでは高いスコアが出ているものの、正確性の面では改善の余地があると実感しました。 試行の価値は? また、生成AIは手軽に試すことができるため、積極的に利用する価値があると感じています。さらに、AIエージェントやGraph RAGといった技術も提案されており、これらを自分自身で実践することが重要だと改めて認識しました。

データ・アナリティクス入門

洞察が導く実践の軌跡

ABテストの注意点は? ABテストは、広告制作や新商品のパッケージ調査など、クリエイティブの評価でよく用いられる手法です。実際の業務で使用していたためなじみがありましたが、条件を揃える部分で見落としがちな点があるため、実践時は特に注意しなければならないと感じました。 打ち手比較の意義は? また、打ち手の比較に関しては、単なるデータ分析にとどまらず、業務上の課題解決のための思考パターンとしても応用可能だと実感しました。物事の意思決定における「比較」は、非常に重要なプロセスであると改めて認識しました。 課題継続検証は? 業務では常に課題が発生するため、まず現状を把握し、比較のためのデータを精査しながら継続して検証することが重要だと考えます。さらに、プロセスを細分化して仮説を立て、実際に試していくというルーティンを、どの状況においても意識して取り組んでいきたいと思います。

「認識」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right