データ・アナリティクス入門

分けて比べる!分析の真髄

4段階は何を示す? 4段階の仮説→検証→改善策立案を、具体例を交えて説明していただき、各段階での重要なポイントが明確になりました。自己流や独学で試行してきた私にとって、とてもありがたく、有意義な時間となりました。 分け比べで何が分かる? 初回から印象に残ったのは「分けて比べる」という考え方です。繰り返し実践することで、分析の本質を実感できるようになりました。 データ選択はどう考える? また、社内で適切なデータを選び出す際には、データが目指すべき姿を示しているのか、あるいはデータ自体が何を表しているのかをしっかりと見極め、指標として活用する重要性を感じました。眺めるだけでなく、常に目的意識を持ってデータに向き合うことが大切です。 自社データ整備はどう? まずは自社データの整理を行い、そこからカテゴライズやインデックス化を推進し、目的別にすぐ利用できる状態を整えたいと考えています。また、データの整え方や代表値の種類、グラフ化、ピボットテーブルの加工方法など、基礎的な手法を部内にレクチャーすることで、自分自身の理解不足や弱点を洗い出し、互いに教え合いながら、数ヶ月後にはみんなが同じ目線で分析結果を議論できる環境を作り上げたいと思います。

データ・アナリティクス入門

仮説と枠組みが切り拓く採用戦略

枠組みは何故有効? 仮説を立てる際、何もないところから考えるのではなく、3Cや4Pといったフレームワークに沿って整理することで、思考の構造が明確になりました。実際、これらの手法を用いることで、多角的な発想が生まれ、スピードや行動の精度が向上することを体感しました。 採用戦略、どう練る? 採用担当としては、仮説思考を3Cおよび4Pと組み合わせることで、効果的な採用戦略が練れると感じています。具体的には、3C分析ではカスタマー(候補者)、コンペティター(競合企業)、カンパニー(自社)の視点から状況を整理し、4Pの枠組みではProduct(採用ポジション)、Price(給与・待遇)、Place(勤務地・環境)、Promotion(採用広告・PR)を検討することで、各視点からの課題と仮説を明確にしています。 PDCAは効果的? また、こうした枠組みを基に、毎週のデータ集計時に採用課題に対する仮説を立て、各仮説に対する検証方法を決定してデータを収集しています。その後、得られた結果を分析し、打ち手を検討した上で採用戦略に反映。定期的に効果を測定し、PDCAサイクルを実践することで、常に戦略の精度を上げていくプロセスが整っていると感じました。

データ・アナリティクス入門

小さな実験から大きな発見

原因分解はどうする? 問題の原因を明らかにするためには、まずプロセスに分解することが重要です。また、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが求められます。 テスト実施はどう? ABテストは、条件をできるだけ揃えて比較する有効な手法です。実施する際は、まず目的や仮説を明確にし、検証項目をしっかり設定することが大切です。さらに、テストは1要素ずつ行い、複数の要素を同時に検証する際は他の手法の検討が必要です。加えて、同一期間で実施することでテスト要素以外の環境要因の影響を最小限に抑えることが可能となります。 検証法はどう考える? 広告効果の検証においては、CVポイントやKPIに応じて適切な検証方法が変わります。実際にABテストを実施する場合もあるため、どのポイントを検証するかという仮説設定が非常に重要です。 効果はどこで現れる? 現在、広告効果の検証と分析に活用しているソリューションがあり、さらに新たなソリューションの開発も進めています。両方のソリューションを同時に走らせることで、どのKPIやCVポイントで新しいソリューションの効果が発揮されるかをABテストによって検証する絶好の機会だと考えています。

データ・アナリティクス入門

実践で感じたABテストの奥深さ

テスト手法のメリットは? ABテストは、参加者をA群とB群に分け、同時期に検証を行う比較手法であると学びました。この手法は工程が少なく、比較や分析が容易である点が大きなメリットです。しかし、正確な結果を得るためには、比較ポイントを明確に設定し、その他の要素を同じ条件に統一することが重要です。実施時期をずらしたり、多くの異なる要素を入れてしまうと、正確な比較ができなくなるため注意が必要です。 接触率検証の進め方は? 顧客への電話による接触率の検証にもABテストを適用しています。具体的には、予測ツールを用いて算出した接触率が最も高いとされる時間帯と、ランダムに行った場合の接触率を比較することで、予測ツールの効果を測定しています。また、手紙やSMSの文面案についてもABテストを実施し、より効果の高い方法を見極めています。 テストテーマはどう決める? ABテストの導入にあたっては、まずテストのテーマとターゲットを明確に決定することが重要です。テストテーマは業務目標に直結していることを意識し、ターゲットは一つの要素に絞るように確認します。さらに、比較する際には、データ数、期間、手法が全て同一であるよう計画を立て、正確な検証ができるよう努めます。

データ・アナリティクス入門

仮説と検証で切り拓く成長

問題発見はどう進める? 問題の原因を探るため、まずプロセスごとにアプローチする手法を学びました。その中で、A/Bテストを活用し、仮説を立てた上で実際に検証を重ねる方法が効果的であると理解できました。また、総合演習を通して、これまでの学習内容を振り返り、自分の知識を整理する貴重な機会となりました。 仮説検証は効果的? データ分析においては、目的を明確にし、分析に入る前に仮説をもつことの重要性を再認識しました。分析プロセスを着実に進めるとともに、効果的な切り口でデータを把握することが求められると感じています。取り組んでいるサービスのユーザ活用場面を拡充するためには、利用シーンをプロセスに分解し、それぞれを検証した上で改善策を策定することが必要です。 分析の進め方は? 具体的には、各プロセスに対して適切なデータを条件を揃えて抽出し、抜け漏れなく検証を進めることが求められます。改善策を検討する際には、複数の選択肢を根拠に基づいて検討し、基準を設けることで効果的な施策に絞り込むことが重要です。また、分析作業は複数のメンバーで進めるため、作業開始前に目的や意味合いを共有し、各メンバーが同じ認識で取り組むことにも留意すべきだと実感しました。

デザイン思考入門

ユーザーの声で開く新たな可能性

フィードバックの意義は? ユーザーやメンバーからのフィードバックが、製品やサービスのブラッシュアップに大いに寄与し、ひいては新たなアイデアの創出に繋がるという点が非常に印象的でした。現状では、製品開発において構造や機能の検証は行われるものの、人間中心の視点でユーザーの共感や意見を十分に取り入れる場面が少なく、チームで意見交換を行うことが新たな開発のヒントとなると感じました。 SCAMPER法の効果は? また、SCAMPER法の7つの視点を実際に活用することで、その効果が実感できるという点も参考になりました。さらに、初めて知ったストーリーボードは、ユーザーの価値ある体験を物語形式で視覚化する手法として理解が深まり、大変有益でした。 ペルソナ設定はどう? この学びを通じて、エンドユーザーを具体的にイメージするためにペルソナを明確に設定すること、そしてエンドユーザーにとっての価値(バリュープロポジション)を中心に考えることの重要性を再認識しました。加えて、開発チーム内でSCAMPER法やダブルダイヤモンドの手法を取り入れ、ユーザーからのフィードバックを効果的に得られる仕組みを構築することが、今後の製品開発に大いに役立つと感じました。

データ・アナリティクス入門

平均だけじゃないデータの魅力

数字加工のコツは? データ分析のアプローチにおいて、「数字を加工するためのポイント」を学びました。これまで単純平均だけに頼っていた自分に対し、加重平均、幾何平均、中央値など、分析の目的に応じた代表値の捉え方があることを知り、大きな気づきとなりました。 散らばりの見方は? また、標準偏差によりデータの散らばりを見る方法についても、漠然としたイメージから、基本的な考え方や2SDルールの説明を受けることで、より明確に理解できるようになりました。 顧客単価の確認は? 現在、一定の条件下で顧客単価を分析しており、単純平均以外の視点やバラつきの観点からの分析に着目し、これまで手つかずだった部分の解明に取り組む予定です。その際、前回学んだ分析の目的を明確にし、仮説を立てながら検証する手法を実践したいと考えています。 実践方法はどう? 具体的には、以下の点を意識して進めます。まず、初回の学びに沿った手順を振り返りながら、地道に分析に取り組むこと。次に、仮説を立てる際には、数字をざっくりとビジュアル化して全体像を把握すること。そして、代表値や散らばりに焦点を当てた分析を行い、見やすく伝わりやすいグラフなどのビジュアル化にも努めます。

データ・アナリティクス入門

理想に迫る戦略思考の実践術

講義で何を感じた? 今回の講義では、ビジネススクールの事例を通して、生徒数の確保にばかり注目してしまう傾向について考える機会を得ました。しかし、まずはありたい姿を明確にし、その実現に必要な課題を洗い出すことが重要だと実感しました。このプロセスにおいて、ロジックツリーを用いて視覚的に整理する手法は非常に有効であると感じ、今後は必ず活用していきたいと思います。 戦略のギャップはどこ? 次に、本社戦略としてのあり方と、各営業拠点での実践にギャップがないかを確認することに着目しました。両者に乖離がある場合、現状のエリアで不足している点や遅れている点が明確になると考えています。ありたい姿から導かれる課題が適切かどうかを再確認するために、担当者とディスカッションを重ね、戦略の見直しを行うことも重要なプロセスです。この中で、MECEの原則を実践できているかどうかもひとつの検証ポイントとなりました。 MECEの活用はどう? 一方で、MECEの思考法を一人で完全に使いこなすためには、経験を積むことが不可欠だと感じます。常に漏れがないように努めてはいるものの、やはり抜け落ちが生じてしまうと実感しており、今後の課題として捉えています。

データ・アナリティクス入門

フレームワークが導いた学びの光

原因解析のコツは? what→where→why→howの順に問題を捉えることで、原因解析を体系的に進めやすくなります。フレームワークを利用することで、見落としなく検討でき、説明もしやすくなる点が非常に役立ちます。また、自分自身の思考のクセを理解することで、視野が偏らないよう意識することも大切です。情報分析を通じて、傾向を把握し、結論へと近づくプロセスは非常に有益です。 合意形成の秘訣は? 通常業務の場では、まずイシューを明確にし、その上で他者と合意形成を図ります。次に、多様なアイデアを出しながら仮説を立て、検証を重ねることで、より説得力のある説明が可能になります。単なる常識的な案ではなく、分析結果を生かしながら良い案を生み出すことに挑戦することが重要です。 重要なポイントは? 例えば、コストダウン施策の検討においては、膨大なデータの中からどの部分に着手するかを問い、自分にとって最重要と思われる情報に絞って集中的に分析します。仮説を立て、検証を繰り返す過程は、開発業務と同様の手法で進められます。そして、問題解決のためにどのような手段が最適かを考え、他者にも分かりやすく伝える工夫が、成功へと繋がるポイントとなります。

データ・アナリティクス入門

仮説と対話が創る次世代研修

仮説検討時、多角的視点は? 仮説を検討する際は、思考の範囲を広げることが重要です。そのため、フレームワークや対概念を活用し、多角的な視点から仮説を立てる工夫を行っています。 A/Bテストで差は出る? また、Howを考える段階でA/Bテストの手法が有効だと考えました。A/Bテストでは、従来の方法で実施するグループと新たな介入方法を採用するグループに分け、基準を統一して介入の違いだけを明確にし、効果の原因を特定できるようにします。 研修効果の確認は? こうした手法は、社内研修の効果測定にも応用できると考えました。研修の開催形式(対面またはオンライン)、実施内容(座学中心かワークショップ中心か)、講師の伝達方法などでグループ分けを行い、研修後のアンケートやミニテストを通じて効果を検証する方法です。 入社研修、何が改善点? 現状、私が担当している入社時研修は座学中心で、受講者同士の対話がほとんど見受けられません。そこで、講義内容に受講者間で対話ができる設問を追加し、対話の時間を設けるなど、ワークショップに近い形式へと徐々に変更していく計画です。まずは、会社概要の部分をクイズ形式にするなど、工夫を重ねる予定です。

クリティカルシンキング入門

心に響く学びのリアル声

正しく伝えるには? 伝わる日本語を意識することは、まず主語や述語、句読点を適切に使い、言いたいことが確実に伝わるよう努めることが重要だと感じました。相手に合わせて主張の根拠を調整することで、より説得力のあるコミュニケーションが可能になると思います。 論理を整理するには? また、ピラミッドストラクチャーを活用して事象を整理・可視化する手法は、仮説を深く掘り下げ、なぜを繰り返すことで対策に結びつける点が非常に有益だと実感しました。これにより、論理的で明確な提案ができるようになると考えています。 顧客対応はどうすべき? さらに、医師など特定の顧客にメールを送る際は、文章を分かりやすく構築することが大切です。交渉事の際には、相手のタイプに応じた依頼のアレンジが必要であると同時に、エリアプランの作成においてもピラミッドストラクチャーを活用し、仮説の深掘りと検証のサイクルを意識することが求められます。 思考習慣は何が必要? 以上の学びを踏まえ、ピラミッドストラクチャーの思考法を習得するためには、普段から論理的な構造や流れを意識し、仮説を繰り返し問いながら具体的な対策を導く習慣を身につけることが重要だと感じています。

クリティカルシンキング入門

事実を分解して新たな発見を

数字は何を示している? 数値や事実を分解することで、新たな事実が見えてくると同時に、その解像度を上げることができると感じました。この際、特に意識すべきは「切り口」であり、仮説や目的をもって複数の視点から事実を確認することが重要です。自分は、ある傾向にすぐ飛びついてしまい、その先の検討を十分に深められていなかったため、今後はどんな傾向が見えても多角的に事実を検証するよう努めたいと思います。 現状の原因は何? また、企画立案の際も、ありたい姿と現状のギャップを埋めるために、事実を分解して原因を追求する手法が有効だと感じます。現状の事実がなぜ生じたのかを明らかにするために、事実を細分化し、多角的に確認することは重要です。実際、直近では、社員向けに業務と介護のリテラシー向上を図る施策の検討において、現状確認のために事実を分解して捉える作業を進めており、どのようなデータを収集すべきかも併せて検討しています。 業務改善の秘訣は? さらに、進行中の業務に取り組む中で、早速「分解」に意識を置いた事実確認を試みています。この施策で得た経験をもとに、他の業務においても同様のアプローチを活用できるようにしていきたいと考えています。

「検証 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right