クリティカルシンキング入門

切り口と仮説で視野を広げるデータ分析学び

数値分析の固定概念を超えて 分析とは、数値を分けて検証することと認識していました。固定概念があり、年齢層は10代ごとなど決まったフレームで対応する傾向がありましたが、データによって柔軟に対応すべきと感じました。今後は、様々な切り口で分析を行うことを決めました。ただし、行う量が多すぎると時間ばかり浪費するので、仮説と検証を繰り返し、仮説力を高めるように努めます。 どのように視野を広げる? 数値検証は、どの分野でも必要です。自社においても多くのデータがあるため、切り口と仮説を意識して活用していきます。数値を扱う部署にいたため、頭が固くなっていると感じていましたが、検証を通じて視野を広げようと思います。会社の中でも分析に期待されている声があるので、この研修を活かせればと考えています。 新規業務にどう備える? 部署が変わってから数値検証やグラフ作成の機会が減少していますが、この研修を受けて学び直し、今後の新規業務に備えたいと思います。ミーシーについては知識としては理解していると感じても、実際に行うと漏れやダブりが発生しがちですので、今後は自分の手法が本当に正しいか常に意識して進めたいと思います。

データ・アナリティクス入門

平均値の罠に気づいてデータを活用する方法

平均値の危うさを再認識 今回の学習で、平均値の危うさを改めて知りました。例題を通じて、グラフにすると簡単に理解できる数値もあれば、解釈が難しい数値もあると感じました。代表値と散らばりをうまく活用して、仕事に活かしたいと思います。 正規分布と2SDルールに興味 これまでも様々なグラフを見たことはありましたが、平均値の名称と内容について初めて深く理解できました。特に、正規分布と2SDルールはとても興味深かったです。 標準偏差の応用は可能? 標準偏差の数値でデータの散らばりを明確にすることも応用できそうです。弊社オウンドメディアにおけるコラムのオーガニック流入の記事ごとの順位を、分布グラフを用いて検証してみたいと思いました。それにより、カテゴリーを大分類し、リライトの優先順位を決めるなどの応用が期待できます。 新たな発見を期待して まずは、今回学んだ内容をしっかり復習し、これまで手をつけていなかった集計にも活用してみます。そうすることで、新たな発見や課題が生まれることを期待しています。さらに、TOP10の記事のキーワードリサーチにも、この解析手法を試してみたいと思います。

データ・アナリティクス入門

データと仮説で磨く解決力

解決策はどう考える? 問題解決のためには、まず原因を明らかにするためのプロセスに分解し、複数の選択肢を立案してから根拠に基づいて絞り込むアプローチが有効です。また、施策の効果を比較しながら仮説検証を繰り返すことで、より的確な解決策へと精度を高めることができます。さらに、データ分析によって問題解決の精度を確実に向上させるため、仮説に基づいたアプローチと新たなデータ収集を組み合わせるという手法も取り入れ、日々その思考を鍛えていくことが大切だと感じました。 仮説検証は何が鍵? 一方、問題解決プロジェクトにおいては実現性を重視するあまり、手軽に実行できる解決策が優先されがちな点に疑問を抱いていました。しかし、仮説検証を通じて得られる新たなデータもまた価値があると認識しています。そのため、事前にどのようなデータ収集や分析が可能かを議論し、リードすることが重要だと考えます。メンバーには、問題解決のステップ全体を共有し、現在の議論がどの段階に位置しているのかを意識してもらうことで、いきなり解決策の立案に飛び込むのではなく、新たなデータを用いた仮説検証を積極的に取り入れていくよう促していきたいと思います。

クリティカルシンキング入門

問いで見えるチームの未来

問いをどう設定する? まず、答えを急がず、まずは問いを立てることが大切だと理解しました。自分自身だけでなく相手も偏った考えに陥りがちなため、問いを継続する際には、MECEやロジックツリーなどの手法を活用して、自分の視点が客観的かどうかチェックしています。 部署兼務の意義は? 3月から新しく立ち上げた部署との兼務となったため、まずは重要な課題(イシュー)を特定し、新しい部署が軌道に乗るよう努めたいと考えています。また、現在の部署にも課題が残っているため、チームメンバーと共にイシューの特定を進めていく予定です。みんなで話し合うことで問いを共有し、同じ目的に向かって前進できると信じています。 ビジョンどう見極め? あるべき姿を考え、まずはそのビジョンがぶれていないか、他者の意見を聞くことが重要です。現状を正確に把握し、理想とのギャップを明確に言語化することで、解決策を導き出します。解決策に早急に飛び付くのではなく、様々な切り口で問題を分解し、漏れなく重複なく検討することが求められます。最終的には、複数の仮説を立てることで、反対の視点や「NO」の仮説からも検証を進めています。

データ・アナリティクス入門

分解して実験!柔軟思考の学び

原因はどう分析する? 原因を把握するためには、まず複数のプロセスに分解して考え、どこに問題が潜んでいるか確認することが重要です。良さそうな仮説が浮かんだら、すぐに試して実際の反応を収集し、実験や検証を通じてブラッシュアップしていくプロセスが効果的です。正しい原因を探しすぎず、迅速な行動が大切だと思います。 どこで顧客が離脱? ファネル分析は、顧客の行動を理解するのに役立つ手法です。各プロセスを細かく分解し、数値や割合を比較することで、どの段階で大きな離脱が発生しているかが明確になります。例えば、ECサイトにおいては、検索段階なのか、カート投入後なのか、決済時なのかといった具体的な離脱ポイントが把握できる点が特に有用です。 分析方法のポイントは? また、What、Where、Why、Howというステップを踏むことで、データ分析の精度が向上し、迅速な問題解決につながると実感しています。仮説を複数立てたりプロセスを細かく分解することは大切ですが、それに固執しすぎると原因分析や具体的な改善策の検討に進めなくなるため、柔軟な思考を保つことが重要だと感じました。

データ・アナリティクス入門

仮説で切り拓く未来戦略

仮説をどう整理する? 今回の講義では、複数の仮説を立て、その網羅性に注目する視点が非常に印象的でした。これまで仮説検証に取り組む際、十分に意識していなかった点も改めて考える良いきっかけとなりました。特に、結論を導くための仮説と問題解決に向けた仮説を、過去・現在・将来の軸で整理して考える手法は、新たな学びとして大変有意義でした。また、仮説を証明するために必要なデータの収集方法や、データを加工する際の視点についても、今後さらに知識を深めるべきと感じました。 データで何を探る? さらに、Google Analytics以外の情報源、例えば売上データや顧客データ、購買データなどから顧客の傾向や購買パターンを把握し、適切な施策へと結びつける重要性を再認識しました。仮説検討時には3Cや4Pの視点を意識し、より具体的な改善策に取り組んでいきたいと考えています。担当クライアントのデータを活用しながら、どの組み合わせの商品が選ばれるのか、また一回あたりの購入金額をいかに向上させるかなど、具体的な戦略を検討し、常に新たな課題や仮説に向き合う姿勢を持ち続けることが大切だと実感しました。

データ・アナリティクス入門

平均だけじゃないデータの真実

データ比較は何が目的? データ分析において、比較は重要な手法です。たとえば、単純平均は代表的な指標ですが、これだけでは散らばりの情報が反映されず、重要なデータが見逃される危険性があります。そこで、標準偏差や中央値など、状況に応じたさまざまな指標を併用することで、より正確な分析が可能となります。また、グラフ化することにより、傾向を把握しやすくなり、新たな仮説を立てやすくなるという利点もあります。 サイト指標をどう考える? Webサイトにおける各種指標の検討でも、従来の単純平均だけでなく、データのばらつきを反映させる標準偏差の計算や、グラフを用いたビジュアル化が重要であると考えられます。こうした手法によって、これまで気付かなかった仮説を発見する可能性が広がります。 仮説検証はどう進む? 現在実施しているWebサイトのデータ分析についても、今回学んだ各種指標を活用し、改めて平均値の計算やヒストグラムによる可視化を行います。その上で、従来の仮説が成立しているかどうか、また新たな仮説が導き出されるかを検討し、反復的な検証により、より多角的な分析を進めていく予定です。

クリティカルシンキング入門

データを巧みに操る分析の旅

数字の裏に隠れた答えは? 数字の羅列にしか見えないデータでも、多角的に分解し整理することで新たな情報が得られることに気づきました。具体的には、WhenやWho、Howといったカテゴリごとにデータを洗い出し、グラフを用いて数字の変動を追ったり、最大・最小の数値や割合を比較することで、多くの学びがありました。私は特にグラフ化や関数に対して苦手意識を持っていたため、これらを克服してデータ分析の手法を身につけたいと強く感じました。 具体例で何が見える? これらの手法は、主に以下のような場面で役立つと考えています。例えば、産休・育休のデータでは、自部署だけでなく全社や日本社会全体の傾向も分析でき、マネージャー育成では、試験結果を単なる合格・不合格の線引きではなく、点数ごとの分布に注目して分析が可能です。 どう伝えれば安心する? また、上司に資料を提出する際には、以下の行動を心がけていきたいと思います。まずアウトプットのイメージを具体化し、それに必要な情報を集めます。そして、仮説を立ててそれを検証できる視点で分析し、提案先の社員目線にあったアウトプットを整えます。

データ・アナリティクス入門

データ分析の新しい一歩を踏み出す

データ分析の基本とは? データ分析とは、単なる集計ではなく、比較を通じて意味を引き出すことです。具体的には、有意義なデータを比較し、仮説を立て、その仮説を検証するために、比較対象以外の条件を可能な限り一定に保ちながらABテストを実施することが求められます。 エンゲージメントを高めるためには? データ分析においては、適切な情報を選別することが重要です。例えば、SNSコンテンツのオーガニックポストのエンゲージメントデータを見ることで、どの国でどのようなコンテンツが注目されているかを理解することができます。その上で、さらに具体的に、投稿の時間帯やフレーズ、サムネの違いに焦点を当てたテストを行うことで、より効果の高い手法を見つけることが可能となります。 データの傾向を見極めるには? したがって、データの比較を深め、傾向を分析することに時間と労力を割く価値があります。決まった時間にインサイトをモニタリングし、データの傾向を知る時間を計画的に設けることが大切です。これにより、仮説を立て、有意義な投稿テストを実施することで、より深い知見を得られるでしょう。

アカウンティング入門

イメージと数字で探る企業の真実

どうして企業は違う? 業種や企業の考え方によって、適切な範囲内で変化するという点が一番の学びでした。特にオリエンタルランドでは、価値創出のために人件費が売上原価と位置付けられている点が非常に新鮮に感じられました。また、すぐに財務諸表を見るのではなく、まずその企業の特性を思い浮かべた上で財務諸表をイメージし、実際の数字と照らし合わせることで、自分なりの仮説が見えてくる点に学びの深さを感じました。 業務で何を実践? 今後は、①自分の担当業務においてこの手法を活用したり、日経新聞などで気になる企業について詳細に調査する際に役立てたいと考えています。②また、自社業務で様々な企業の財務諸表を分析する機会に備え、その知識をしっかりと身につけたいと思います。 試行はどう進める? 具体的には、まずある企業を選び、その企業の財務諸表を自分なりに予想します。その上で実際の数値を確認し、仮説の検証を行うというサイクルを繰り返していく予定です。その結果を単に自分の中に留めるのではなく、何かしらの形でアウトプットすることでより実践的な学びに結び付けたいと考えています。

データ・アナリティクス入門

仮説からはじまる成功のヒント

どうやって最速解決する? 課題解決においては、最短かつ最適なルートでゴールに到達することが他者に対する優位性につながると考えます。そのため、場当たり的な対応や、全体をむやみに検証して無駄にコストや時間を費やすことを避けるためにも、まずは仮説を設定することが必要です。いかに精度の高い仮説を立てるかが重要であり、そのためには適切な知識、経験、そして考え方が求められます。 課題の本質は何? また、課題に取り組む際は、まず何が課題であるのかを適切に理解し、把握することが不可欠です。課題が不明確であれば、得られる答えも曖昧になってしまうからです。その上、対象となるビジネスなどのドメイン知識や過去の経験に基づき、適切な仮説設定に注力していきたいと考えています。 経験は十分伝わる? すでに実践している部分もありますが、さらなる精度向上とスキルアップを図るために、フレームワークと呼ばれる考え方のツールを導入して、より高い精度を目指していく所存です。今回学んだ3Cや4Pを基本とし、今後さらに他の手法も取り入れながら、知識と経験を積み重ねていきたいと思います。

データ・アナリティクス入門

仮説検証で未来を切り拓く一歩

なぜ仮説検証が必要? 今回の振り返りを通じ、まず仮説検証の重要性を再認識しました。数字を単に眺めるだけではなく、要素ごとに分解し、さまざまな仮説を立てながらデータを検証のツールとして活用する方法が有効だと感じました。また、比較を意識した分析を行うために、率や代表値を用いる手法が非常に効果的であるという考えにも改めて気づかされました。 実績把握で何が変わる? これらの学びは、月次実績の把握や事業計画の検討にも応用できます。過去の実績に基づいて仮説を立て、検証を重ねることで、次年度への具体的な打ち手が明確になっていくと実感しました。前年同月比や前年同期比を活用する手法も、現業務において引き続き継続し、より深い分析に結びつけたいと考えています。 復習と共有で成長は? また、ナノ単科の画面が見られなくなる前に、回帰分析や代表値の部分をしっかり復習し、自分の知識として定着させることが必要だと感じました。さらに、アウトプットの重要性を痛感したため、自ら立てた仮説や検証結果を周囲と共有し、意見を取り入れることで自身の成長を一層促進していきたいと思います。

「検証 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right