データ・アナリティクス入門

数字が紡ぐリアル戦略ストーリー

数字の意味は何だろう? 分析のアプローチについては、ただ単に分析を進めるのではなく、数字に基づくストーリーを意識することの重要性を実感しました。統計データを見る際にも、平均値だけでなくばらつきを把握することで、より正確な判断ができると感じています。データ全体の傾向を理解した上で、平均、中央値、最頻値といった代表値から最も適切なものを選ぶことが大切です。 課題解決の鍵は? また、顧客の課題に対して解決策を提案する場合、やみくもな分析ではなく、具体的な数字に裏打ちされたストーリーによって、提案の確度を高め、顧客の納得感につなげることが求められると考えています。顧客自身が「これなら解決できる」と信じ、実行に移していただくためには、具体的で説得力のある根拠が不可欠です。 戦略の軸は何か? さらに、これからある不動産ブランドの戦略を分析する際には、まず「何を知りたいのか」という問題意識をはっきりさせ、最終的にどのような結論に導きたいのかを明確にすることから始めます。その上で、価格帯やエリア、スペックなど細かい情報に分解し、必要なデータが取得可能かどうか確認することが大切です。 仮説はどう練られる? 次に、取得したデータをもとに、なぜその戦略が採用されているのかという仮説を立て、検証の優先順位をつけながら実態を深く理解していく流れが有効だと感じました。こうした手法を通して、現実に即した分析が行え、説得力のある結論に結びつくと確信しています。

クリティカルシンキング入門

実践で磨く分解の極意

全体像はどう把握? 本講座では、全体をしっかり定義した上で作業を進める重要性を実感しました。まず全体像を捉えることで、分解の作業がスムーズになり、全体に漏れがなく整然とした分析が可能だと感じました。 MECEは何を意味? また、分け方においてはMECE(抜けや重複がない)を常に意識することが大切だと学びました。例えば、単に「若者」や「リピーター」といった大雑把なカテゴリーで分類してしまうと、定義が曖昧になり、漏れやダブりが発生する可能性があるため、年齢や来店頻度など定量的な指標を用いることが有効です。 複数切り口は有効? さらに、仮説を持ちながら複数の切り口でデータを分類する手法には大きな意義を感じました。年代を10代ごとに分ける方法や、学歴など別の視点で区切る方法など、異なるアプローチを試すことで、より実態に即した傾向を掴むことができると感じました。 視覚チェックで見える? 加えて、図を描くなど視覚的な手段を用いてチェックすることで、直感だけでは気付けなかった課題を明確にできる点にも非常に参考になりました。最終的には、分けた後に「本当にそうか?」と問い直すプロセスが、より深い理解と洗練された分析に結びつくと実感しています。 実践から何を得る? 最後に、考える前にまず実際に分けてみることの大切さを学びました。実践を通じて自分自身の仮説を検証し、新たな視点を得るプロセスは、今後の分析活動に大いに役立つと感じています。

デザイン思考入門

あなたも気づく新授業の扉

講義終了の感想は? 前期の講義終了後、学生アンケートの結果が教員にフィードバックされ、講義改善に生かされる仕組みがあることを改めて実感しました。ゼミの学生からも率直な意見が求められる中、今回の講義を通じて暗黙知の視点の大切さに気づき、複数の教員に授業見学をお願いするに至りました。 主体的授業の課題は? これまでは、学生が主体的に考える授業を目指し、講義形式をできるだけ避けるよう努めてきました。しかし、学生の受講態度や教員の講義手法を観察する中で、自分に不足している視点が多いこと、そして現場には根本的な課題やニーズが多く存在することを痛感しました。 現場で何を学ぶ? 課題の明確化のため、まずは現場に出向き、実際の行動や習慣を観察することが重要だと感じました。観察では、意識されにくいユーザーのニーズや行動の癖を捉え、インタビューではユーザーが自覚している経験や知識を言語化するという違いがあります。 定性分析の効果は? また、定性分析を進める中で、KJ法や付箋を利用した方法を取り入れ、情報の整理やグループ化を行うことの有用性を学びました。具体的には、問題の本質を捉えること、得られた洞察を整理・可視化すること、そしてユーザーの状況や課題に対する解決策の提案を通じた顧客課題説の作成がポイントとなります。 今後の改善策は? 最後に、今後も常にユーザー中心の視点を維持し、検証と改善を重ねる姿勢が必要であることを強く感じました。

クリティカルシンキング入門

データ分析で企業課題を解決!

データ利用の意味は? データを用いる際には、何を表しているのかが明確であり、求める情報を把握できることが重要であると再認識しました。データを全体的に理解し、必要な情報が簡単に見つけられるように工夫を凝らすことも大切です。 目的設定はどうする? データを分析や検証に活用するには、明確な目的を持つことが欠かせません。また、データを分解する際にはMECE(Mutually Exclusive, Collectively Exhaustive)を意識し、様々な観点から分解を試みることが重要であると学びました。 決算分析の秘訣は? 私の会社での月次・年次決算や予実乖離分析にもこの手法を活用できると考えています。これまでの分析では、売上や利益などの主要な数字の推移に依存しており、MECEを用いた分解を行わなかったため、説明できない誤差が残ることがありました。しかし、このスキルを活用することで、予実乖離分析をより正確に行えると感じています。全体の財務諸表を、顧客別や顧客売上別、利益別、部品別といった様々な視点で分解し、正確な分析に結びつけたいと考えています。 コスト要求はどう対処? また、不定期に発生する顧客からのコストダウン要求に対して、社内のコスト把握と顧客要望との比較分析を行うことも目指しています。そして、24年度の予実乖離分析を行ったうえで、25年度の予算作成に反映させ、より正確な計画を作成したいと考えています。

クリティカルシンキング入門

学びを深めるための日本語の指南

正しい文章はどう作る? 日本語を正しく使うためには、書籍を読むことで文章に触れる機会を増やす必要があると感じました。元の文章に影響されて主語と述語が混乱することがあるので、まず何を言いたいのかを明確にし、その上で日本語が正しいかどうかを確認しながら文章を組み立てることが重要だと考えています。 説得の秘訣は何? 伝える上で、説得する相手が何を求めているのかを考慮し、それに基づいて行動していきたいです。説得に必要な要素を多角的に考え、整理する能力を持ちたいと思います。研究が必要な部分がある場合、それも含めて多方面から案を出し、検討することが重要だと感じました。 なぜ文章を確認? 日本語の正確さを求めるため、ブランディング業務としてプレスリリースやSNS、チラシなどの文章を確認しています。 ピラミッドの効果は? ピラミッドストラクチャーは説得や施策検討のほぼすべてのシーンで活用できると考えています。最近の業務では、CM効果の検証やアンケート制作において、この手法を活用したいと考えています。 伝わる文章の秘訣は? 主語と述語を意識し、言いたいことが明確に伝わるように心がけます。また、相手の説得ポイントを意識し、それを軸に伝えることを今後意識していきます。施策検討などで自分の考えをまとめる際には、要素を包括的に分解し、前回学んだMECEを用いてダブりや漏れがないか確認することを心掛けます。

データ・アナリティクス入門

分解して発見!論理の先へ

講義で何を学んだ? 今週はライブクラスに参加できなかったため、動画で講義を視聴しました。講義では、データ分析を進めるにあたって、解決すべき問題を明確にすることの重要性が説かれていました。また、売上低下の原因を複数の視点から分解し、掘り下げた情報の中から解決につながる要素を見出す手法について学びました。 比較で見る視点は? 具体的には、客層やばらつき、年齢層、客単価といった各要素を前年のデータと比較することで、売上低下の原因を浮かび上がらせる方法が紹介されました。比較の過程では、どのグラフを用いて示すのが適切かは一つに限らず、さまざまな手法が存在する点も興味深かったです。 偏りを防ぐには? また、自分の考えに偏りがかからないよう、誰にでも納得してもらえる解決策を導くためには、内容をしっかり分解しデータ分析することが不可欠であると再認識しました。これまでの経験や業種に頼らない、異なるアプローチや視点で物事を見る意識を持つことの大切さを改めて感じました。 論理的思考は? データ分析の学習を通じて、より論理的な思考と仮説検証の実践が重要であることを学びました。情報整理やパターンの発見、適切な結論の導出には、さまざまなフレームワークや手法の活用が役立つと感じ、これを習慣化することが今後の課題と考えています。また、不得意なエクセルでのグラフ作成についても、試行錯誤を重ねながらスキル向上に努めていきたいと思います。

データ・アナリティクス入門

3Cと4Pで学ぶ仮説の魔法

仮説構築はどう効率化? 仮説を立てる際、ゼロからすべてを考えると時間がかかるため、よく使われるビジネスフレームワークを活用することで、より効率的に仮説を構築できます。 3Cの有用性は? 代表的なフレームワークのひとつに「3C」があります。これは事業戦略を分析する際に、顧客(Customer:市場・顧客)、競合(Competitor:競合)、自社(Company:自社)の観点から考える手法です。具体的には、顧客が誰か、市場が今後伸びるのか縮小するのか、どの競合が存在し、どれほど強いのか、そして自社のサービスが顧客のニーズを満たしているかといった点を検討します。 4Pのメリットは? もうひとつは「4P」で、自社のサービスをさらに詳しく分析するためのフレームワークです。Product(製品)、Price(価格)、Place(場所)、Promotion(プロモーション)という観点から、製品やサービスの質、適正な価格設定、提供方法や手段、そして効果的な販売促進の方法などを具体的に検証します。 導入評価の視点は? また、医薬品の導入評価時において、アセットの事業性評価を行う際は、3Cのフレームワークを意識することが重要です。ターゲットとなる患者層(Customer)、競合他社(Competitor)、自社の立ち位置(Company)という視点から評価を進めることで、より的確な判断が可能となります。

データ・アナリティクス入門

小さな挑戦が未来を創る

問題の原因は何? 問題を特定する際には、まずプロセスごとに整理して考え、複数の案に対して各々の確度を点数化して比較検討する手法が有効だと学びました。また、仮説検証のために小さいサイクルを繰り返すことで、実際の運用の中で迅速に改善策を試すことができると感じています。過去に広告のABテストを実施した経験から、構造を改めて理解することもできました。 チーム士気は上がる? 実務者はこのような小さいサイクルの繰り返しによる検証の重要性を十分に理解している印象ですが、一方で意思決定者はサイクルの大きさに注目しがちだと感じました。今回の学びを社内で明確に説明することができれば、チーム全体の士気向上にもつながるのではないかと考えています。 売上の謎を解く? たとえば、自社ECサイトのアクセス解析において、「特定商品の売上が伸び悩んでいる一方で、検索数は増加している」という状況が見受けられた際は、売上の構成要素や購入プロセスを分解して整理しました。その上で構築した仮説をすぐに検証し、実践することで問題解決に取り組んでいます。 効果はどう確認? また、繁忙期前にECサイトでセールを実施する際、消費行動を促すフレーズの効果を明確にするため、あらかじめ広告のABテストを行いました。テストの結果をもとに効果の高いフレーズを特定し、繁忙期のセールページに反映させることで、より成果を上げる工夫をしています。

クリティカルシンキング入門

目に仕事させる分析術

グラフで何が見える? 数字や表をそのまま眺めるのではなく、グラフ化することで「目に仕事をさせる」という考え方が印象的でした。数字を様々な角度から検証し、視覚的に捉えることで、普段は気づきにくい点が浮かび上がると感じました。また、MECEという概念についても、モレなくダブりなく分析するための具体的な手法(層別分解、変数分解、事象のプロセスでの分解)があることを学び、今後の分析において意識して活用していきたいと思いました。 現状把握のコツは? 私は全社の事務部門において、業務プロセス上の課題を明確にし、改善策を提言・実行する役割を担っています。各種データから課題や問題点を抽出する際、今回学んだ分析手法を取り入れることで、より正確な状況把握ができると期待しています。また、メンバーからの意見をそのまま受け入れるのではなく、他の視点も取り入れながらクリティカル・シンキングを活かして問題点を見極める重要性を再認識しました。 多角的な視点は? 日々の報告や相談を受ける際は、数字については多角的な分析ができているか、課題の洗い出しについてはMECEの観点で漏れがないかをひとつひとつ意識しています。必要に応じて分析の切り口を増やし、グラフ化するなど、手を動かしながら客観的に情報を整理しています。説明を行う際にも、これらの視点が十分に盛り込まれているかを確認し、分かりやすい内容を提供できるよう努めています。

データ・アナリティクス入門

平均に惑わされない、本質を探る

平均値だけで信頼できる? 平均値だけに頼ると、誤った仮説に導かれる可能性があると学びました。今後、データに向き合う際は、代表値だけでなく散らばりにも十分に気を配ることを心がけます。 どうやって指標を使い分ける? 具体的には、単純平均、加重平均、幾何平均、中央値といった指標を意識して使い分け、状況に適した分析を行いたいと考えています。 SNS分析はどう進める? また、SNSコンテンツの制作分析においては、各カテゴリによって、反応が良い投稿でもインプレッションが伸びにくい場合や、逆に反応が少なくともインプレッションが増えるケースが存在することに気が付きました。このような現状から、再現性を持ったPDCAサイクルの実現が課題であると感じます。 どの手法で再現性を高める? そこで、各コンテンツカテゴリについて平均インプレッションとユーザーの反応(例えば、いいね数など)の相関や散らばりを分析することで、再現性の高い投稿カテゴリを見つけ出せる可能性があると考えています。 具体的な分析アプローチは? 具体的なアプローチとしては、まずコンテンツカテゴリの整理を行い、外れ値を除いた各カテゴリごとの平均インプレッションを調査します。次に、平均インプレッションとユーザーの反応数の相関関係や、データの散らばりについても検証します。特に、散らばりが小さいカテゴリは、再現性を高めやすいと捉えています。

マーケティング入門

Z世代の心を掴む新しいマーケティング戦略

ターゲット顧客の真のニーズとは? 今回の総合演習では、ターゲット顧客の不満から真のニーズを把握し、行動パターンに基づいて体験価値を付け加えることで、新しい市場で顧客を勝ち取る方法を学びました。特に、スマートフォンが当たり前となったZ世代が急速にトレンドを変えていることを実感しました。彼らの媒介を見る視点や、枠にとらわれない考え方は、新しい発想の基盤となり、Z世代について深く考える良いきっかけとなりました。 自社商品に付加価値をどう与える? 今回の『顧客が価値を感じる体験を付加価値とする』という考え方は、私たちの自社商品においても非常に重要です。しかし、我々の製品は気軽に手に取れるものではないため、新たなアプローチが必要だと感じました。その一方で、手軽に手に取れないという特性を逆手にとり、数少ない『体験できる場』に重きを置くことで、顧客が「行ってみたい」と感じるようにするのも一つの手法として考えられます。 次なるマーケティング戦略 具体的には以下の点を考えてみました: - 日常の中で触れる、または目に留まる商品にプラスαの価値を持たせる方法を検討する。 - 体験価値とは何か、その体験によってどのような感情が生まれるのかを自ら検証する。 - マーケティングの本を読み、さらに理解を深める。 このようにして、顧客の体験を重視する新しいマーケティング戦略を考えていきたいと思います。

データ・アナリティクス入門

仮説が拓くわたしの挑戦記

仮説の基本は何? 仮説とは、ある論点に対して一時的な答えを示すものであり、結論の仮説や問題解決の仮説など、さまざまな形で用いられます。この仮説を立てることで、検証マインドや関心・問題意識が向上し、行動のスピードや精度も高まるという効用があります。 データで示す理由は? また、仮説はそれ自体の正しさをデータで示す必要があり、その方法が非常に重要となります。データにより正しいことが証明されるとともに、他の説が否定される仕組みが求められます。良い仮説を構築するには、フレームワークの活用も有効であり、フィールドワークやエスノグラフィーといった手法が、質の高い仮説作成に寄与するという意見もあります。 仮説思考はどう役立つ? さらに、仮説思考は課題や目標の検討にも役立ちます。次年度の事業目標や事業拡大のために、自分なりの課題設定を行う際、また顧客ニーズの変化や新市場を捉える際に、仮説を立ててアイデアを具体化することが求められます。 来年度の目標設定はどう? 来年度の目標設定においては、売上などの事業指標だけでなく、競合との比較や自社への影響を示す独自のインデックスを仮説として設定することが推奨されます。その仮説がどのような状態になれば「影響がある」と判断できるのか、ほかの指数と照らし合わせながら検証し、実際にデータを収集して売上や実感との整合性を確かめることが大切だと感じました。

「検証 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right