データ・アナリティクス入門

平均だけじゃないデータの魅力

数字加工のコツは? データ分析のアプローチにおいて、「数字を加工するためのポイント」を学びました。これまで単純平均だけに頼っていた自分に対し、加重平均、幾何平均、中央値など、分析の目的に応じた代表値の捉え方があることを知り、大きな気づきとなりました。 散らばりの見方は? また、標準偏差によりデータの散らばりを見る方法についても、漠然としたイメージから、基本的な考え方や2SDルールの説明を受けることで、より明確に理解できるようになりました。 顧客単価の確認は? 現在、一定の条件下で顧客単価を分析しており、単純平均以外の視点やバラつきの観点からの分析に着目し、これまで手つかずだった部分の解明に取り組む予定です。その際、前回学んだ分析の目的を明確にし、仮説を立てながら検証する手法を実践したいと考えています。 実践方法はどう? 具体的には、以下の点を意識して進めます。まず、初回の学びに沿った手順を振り返りながら、地道に分析に取り組むこと。次に、仮説を立てる際には、数字をざっくりとビジュアル化して全体像を把握すること。そして、代表値や散らばりに焦点を当てた分析を行い、見やすく伝わりやすいグラフなどのビジュアル化にも努めます。

データ・アナリティクス入門

理想に迫る戦略思考の実践術

講義で何を感じた? 今回の講義では、ビジネススクールの事例を通して、生徒数の確保にばかり注目してしまう傾向について考える機会を得ました。しかし、まずはありたい姿を明確にし、その実現に必要な課題を洗い出すことが重要だと実感しました。このプロセスにおいて、ロジックツリーを用いて視覚的に整理する手法は非常に有効であると感じ、今後は必ず活用していきたいと思います。 戦略のギャップはどこ? 次に、本社戦略としてのあり方と、各営業拠点での実践にギャップがないかを確認することに着目しました。両者に乖離がある場合、現状のエリアで不足している点や遅れている点が明確になると考えています。ありたい姿から導かれる課題が適切かどうかを再確認するために、担当者とディスカッションを重ね、戦略の見直しを行うことも重要なプロセスです。この中で、MECEの原則を実践できているかどうかもひとつの検証ポイントとなりました。 MECEの活用はどう? 一方で、MECEの思考法を一人で完全に使いこなすためには、経験を積むことが不可欠だと感じます。常に漏れがないように努めてはいるものの、やはり抜け落ちが生じてしまうと実感しており、今後の課題として捉えています。

データ・アナリティクス入門

フレームワークが導いた学びの光

原因解析のコツは? what→where→why→howの順に問題を捉えることで、原因解析を体系的に進めやすくなります。フレームワークを利用することで、見落としなく検討でき、説明もしやすくなる点が非常に役立ちます。また、自分自身の思考のクセを理解することで、視野が偏らないよう意識することも大切です。情報分析を通じて、傾向を把握し、結論へと近づくプロセスは非常に有益です。 合意形成の秘訣は? 通常業務の場では、まずイシューを明確にし、その上で他者と合意形成を図ります。次に、多様なアイデアを出しながら仮説を立て、検証を重ねることで、より説得力のある説明が可能になります。単なる常識的な案ではなく、分析結果を生かしながら良い案を生み出すことに挑戦することが重要です。 重要なポイントは? 例えば、コストダウン施策の検討においては、膨大なデータの中からどの部分に着手するかを問い、自分にとって最重要と思われる情報に絞って集中的に分析します。仮説を立て、検証を繰り返す過程は、開発業務と同様の手法で進められます。そして、問題解決のためにどのような手段が最適かを考え、他者にも分かりやすく伝える工夫が、成功へと繋がるポイントとなります。

データ・アナリティクス入門

仮説と対話が創る次世代研修

仮説検討時、多角的視点は? 仮説を検討する際は、思考の範囲を広げることが重要です。そのため、フレームワークや対概念を活用し、多角的な視点から仮説を立てる工夫を行っています。 A/Bテストで差は出る? また、Howを考える段階でA/Bテストの手法が有効だと考えました。A/Bテストでは、従来の方法で実施するグループと新たな介入方法を採用するグループに分け、基準を統一して介入の違いだけを明確にし、効果の原因を特定できるようにします。 研修効果の確認は? こうした手法は、社内研修の効果測定にも応用できると考えました。研修の開催形式(対面またはオンライン)、実施内容(座学中心かワークショップ中心か)、講師の伝達方法などでグループ分けを行い、研修後のアンケートやミニテストを通じて効果を検証する方法です。 入社研修、何が改善点? 現状、私が担当している入社時研修は座学中心で、受講者同士の対話がほとんど見受けられません。そこで、講義内容に受講者間で対話ができる設問を追加し、対話の時間を設けるなど、ワークショップに近い形式へと徐々に変更していく計画です。まずは、会社概要の部分をクイズ形式にするなど、工夫を重ねる予定です。

クリティカルシンキング入門

心に響く学びのリアル声

正しく伝えるには? 伝わる日本語を意識することは、まず主語や述語、句読点を適切に使い、言いたいことが確実に伝わるよう努めることが重要だと感じました。相手に合わせて主張の根拠を調整することで、より説得力のあるコミュニケーションが可能になると思います。 論理を整理するには? また、ピラミッドストラクチャーを活用して事象を整理・可視化する手法は、仮説を深く掘り下げ、なぜを繰り返すことで対策に結びつける点が非常に有益だと実感しました。これにより、論理的で明確な提案ができるようになると考えています。 顧客対応はどうすべき? さらに、医師など特定の顧客にメールを送る際は、文章を分かりやすく構築することが大切です。交渉事の際には、相手のタイプに応じた依頼のアレンジが必要であると同時に、エリアプランの作成においてもピラミッドストラクチャーを活用し、仮説の深掘りと検証のサイクルを意識することが求められます。 思考習慣は何が必要? 以上の学びを踏まえ、ピラミッドストラクチャーの思考法を習得するためには、普段から論理的な構造や流れを意識し、仮説を繰り返し問いながら具体的な対策を導く習慣を身につけることが重要だと感じています。

クリティカルシンキング入門

事実を分解して新たな発見を

数字は何を示している? 数値や事実を分解することで、新たな事実が見えてくると同時に、その解像度を上げることができると感じました。この際、特に意識すべきは「切り口」であり、仮説や目的をもって複数の視点から事実を確認することが重要です。自分は、ある傾向にすぐ飛びついてしまい、その先の検討を十分に深められていなかったため、今後はどんな傾向が見えても多角的に事実を検証するよう努めたいと思います。 現状の原因は何? また、企画立案の際も、ありたい姿と現状のギャップを埋めるために、事実を分解して原因を追求する手法が有効だと感じます。現状の事実がなぜ生じたのかを明らかにするために、事実を細分化し、多角的に確認することは重要です。実際、直近では、社員向けに業務と介護のリテラシー向上を図る施策の検討において、現状確認のために事実を分解して捉える作業を進めており、どのようなデータを収集すべきかも併せて検討しています。 業務改善の秘訣は? さらに、進行中の業務に取り組む中で、早速「分解」に意識を置いた事実確認を試みています。この施策で得た経験をもとに、他の業務においても同様のアプローチを活用できるようにしていきたいと考えています。

データ・アナリティクス入門

仮説で深掘り!売上低下の真因

仮説はどう検証する? 仮説は必ずMESEの考え方に基づかなければならないと感じています。そのため、仮説の正しさを相手に伝えるには、最低でも3つ以上の観点から情報を比較し、各角度で検証する必要があります。また、万が一仮説が間違っている場合に備え、複数の仮説を用意することも重要です。 売上減の理由は? 「なぜ売り上げが下がっているのか?」という問いについて、これまでのアプローチはある特定の数値を比較し、その数値を上げるための方法を提案するものでした。しかし、単に数値を比較するだけではなく、なぜその数値が下がっているのかという深い原因に目を向け、さらに詳細な仮説を立てて実証していく必要があると感じました。今後はロジカルツリーなどの思考ツールを活用し、原因の追求をより体系的に行いたいと考えています。 週次資料はどう整理する? また、毎週作成している週次資料はこの手法を実際に試す良い機会だと感じています。週次資料における各項目の定義を再検討し、仮説構築に不可欠な基本的な指標が何であるかを明確にしていきたいです。さらに、月次と週次で使用する項目の見直しも併せて検討し、より精度の高い改善策を模索していきたいと考えています。

データ・アナリティクス入門

業界事例で実感!仮説検証術

どうして分解が有効? 様々な要素に分解して仮説を組み立て、データを意識した点はとても良いと思います。具体的な業界事例に当てはめて考えることで、理解がさらに深まるでしょう。 具体例はどう映る? 仮説を立てる際には、具体的な業界やビジネスシーンの例を考えると、思考がより深まります。また、データを検証する際にどのようなツールや手法を用いると効果的かを検討することも大切です。 実践で活かすには? 実際のビジネス状況で仮説検証をどう活用するかを考え、具体的に練習することが求められます。引き続き、さまざまな角度から課題を検討してみましょう。 なぜ幅広い視野? 課題は狭い視野だけでなく、幅広い角度で網羅的に考える必要があります。そうしないと、本当の課題を見落としてしまう恐れがあるため、どのようなデータで検証できるかもしっかりと検討することが重要です。 共有はどう役立つ? 自分の考えに固執せず、要素の重要性を周囲と共有しながら多角的に検討していくことが必要です。そして、どのように検証すべきか、またどの項目を指標として設定すべきかを同時に整理していくことが求められていると感じました。

データ・アナリティクス入門

数字を紡ぐ、現場からのヒント

どう分析すれば良い? 「やみくもに分析しない」という言葉を目にし、データ分析の奥深さを再認識しました。現在、チームで検討中の施策に対し、まずは営業担当へのインタビューを実施し、そこで多くの意見が寄せられた内容については、全体を対象にアンケートを行う計画です。 数字の根拠は何故? 数字の根拠をもとにストーリーを作り上げる手法は、相手に響く説得力を持たせる上で非常に重要であると改めて感じました。この考えを念頭に置きながら、実務におけるデータ分析のアプローチをさらに熟考する機会となりました。Week6で総復習を予定していた中で、新たな気づきを得ることができたのは大きな収穫でした。 実務データの秘訣? また、AIコーチングからは、実務における定性データ(インタビューやアンケート)と定量データとの整合性や、数字の根拠から効果的なストーリーを作るための仮説検証のプロセスについての問いをいただきました。まずは、アンケートを通じて定量データを効率よく収集できる仕組み作りに取り組むとともに、過去から蓄積している定量データの中から、今回の営業担当へのアンケートに活用できるものがないかを洗い出してみようと思います。

データ・アナリティクス入門

実践が教える仮説検証の極意

検証手法は有効? 問題原因を明らかにし、仮説検証の手法を学びました。A/Bテストを活用して施策の比較を行い、検証条件を可能な限り統一することの重要性を実感しました。例えば、AM・PMや平日・休日といった環境の違いは、検証対象以外の要素が判断に影響を及ぼす可能性があるため、広告などではランダム表示を取り入れることで正確な評価ができると考えています。 現場実践と課題は? 業務の現場では、店舗出店など莫大な費用と時間を要するケースが多く、テスト環境の確保が難しいのが現状です。しかし、勤務状況や労務上の課題に関しては、実践の機会が得やすいため、身近な課題に対して継続的な取り組みを重ね、自身の中でフレームワークを構築していくことが重要だと思いました。 日々の計画はどう? また、仕事に限らず、収入と出費などの身近なテーマでも問題意識を持つことが大切です。まだ十分にMECEの視点で物事を分析できていないため、さまざまなケースにおける要素分析を行い、知識をストックしておく必要があると感じました。さらに、全体の時間軸を意識して日々の業務計画に落とし込むことで、突発的な対応を極力減らしていきたいと考えています。

データ・アナリティクス入門

ロジックで紐解く成長のヒント

問題をどう洗い出す? 今回の学習では、まず何が問題であるかを洗い出し、その問題箇所を明確にすることの重要性を学びました。問題の原因を詳しく分析し、対策を検討・実行するプロセスや、結果から各要因を考察する点、さらに理想と現状のギャップを埋めるための工夫が大切であると実感しました。 分析手法は何か? また、分析手法としてロジックツリーやMECE分析、さらに階層分析と変数分析の活用が有効であることを学びました。これらの手法を用いることで、データの整理がしやすくなり、効率的な分析が実現できると感じます。 実例で何を発見する? 具体例として、交通系ICカードの決済データを利用し、加盟店やキャンペーンごとの売上分析に応用できる可能性があると考えました。売上分析においては、年代、性別、居住地、曜日などの視点で検証し、来店回数や決済金額の傾向も踏まえて全体的な分析に役立てたいと思います。 量と質のバランスは? 最初の段階では、質よりも量を意識して経験値を積むことが重要と考えています。質も適度に保ちながら、実践を重ね、ロジックツリーやMECE分析を積極的に活用してデータ分析に取り組んでいきたいと思います。

データ・アナリティクス入門

多様な視点で挑む問題解決術

原因と解決策は? 今週は、問題の原因分析とそこから導かれる解決策の立案方法について学びました。まず、問題の原因を明らかにする際、各プロセスに分解して考えるアプローチが有効であることを再認識しました。また、解決策を検討する際には、複数の選択肢を洗い出し、それぞれの根拠をもとに絞り込むことが重要であると理解できました。さらに、A/Bテストの手法が、A案とB案の施策を比較しながら仮説検証を行う上で非常に有用である点に注目しました。ただし、正確な比較を行うためには、両案の条件をできる限り揃える必要があることも学びました。 同時試行は効果的? 従来は、問題の原因をプロセスごとに分解して考えることは自然に行ってきましたが、複数のアイディアを同時に試すという手法は初めての体験でした。A/Bテストでは、一定のクオリティを保った施策を同時に実施するため、一時的に業務負荷が増すものの、原因をより明確に特定できるため、裏付けのある施策の実行に効果的であると感じました。たとえば、組織内で報告体制の改善を図る際、決め打ちの方法に固執するのではなく、A/Bテスト的な視点から問題を解決するアプローチにも挑戦してみたいと思いました。
AIコーチング導線バナー

「検証 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right