クリティカルシンキング入門

分解で見える本質への道

データ分解の意味は? データを多角的に捉えるための分解フレームワークを学びました。このフレームワークでは、①分け方を工夫する、②切り口を変えて考える、③複数の切り口を用いる、④導いた仮説が正しいか自問する、といった思考スキルを活用します。こうした手法により、データを正しく理解し、課題解決へとつなげることが可能になります。また、切り口を検討する際は、目的に沿ってMECEの原則を意識することが重要です。 顧客インサイトはどう? 現在、タスクチームで顧客インサイトに基づくConfidence活動を担当しています。顧客インサイトは、顧客ニーズの特定や戦略策定において重要な情報資源ですが、膨大なデータと多岐にわたる内容により、情報の整理や可視化に課題を感じています。さらに、目の前の数字や表にとらわれがちで、「そのデータから何を導き出すか」という視点が薄れることで、本質的な課題に辿り着けない可能性もあります。 分解スキルの使い方は? そこで、今回Week2で学んだ「分解」のスキルを活用し、データ分析に対する心理的ハードルを下げたいと考えています。まずは来月の顧客インサイト分析資料作成に向け、手を動かしてデータを分解することから始めます。その上で、目的に沿った複数の切り口を検討しながら、自分自身で問いを立て、データを深掘りしていきます。表やグラフなども試行し、情報をいかに伝えやすくするか工夫していきます。最終的には、使用した分析手法と見えてきた課題、そこから導かれる解決策を、チームメンバーに分かりやすく説明できるよう整理するつもりです。

デザイン思考入門

実践で感じたユーザー視点の魅力

アイデアの出し方は? ブレインストーミングを用いて短時間で多くのアイデアを出し、KJ法で整理して優先順位を明確にすることで、ユーザー体験の視点から課題にアプローチできると感じました。さらに、シナリオ法を使いユーザーの行動や感情を深く分析することで、課題解決の糸口が具体的に見えてきました。ペーパープロトタイピングを活用し早期にフィードバックを得ることや、バリューポジションを明確にして独自の価値を伝える手法、そして競合調査を通じてターゲットのニーズに合った方針を策定することが、ユーザーに寄り添ったWebサイトやサービスの提供につながると考えています。 チーム作業の効果は? 実践からは、ブレインストーミングをチームで行うことで個人では引き出せない多様なアイデアが見えてくることを実感しました。また、シナリオ法によりユーザー視点での課題が明確になり、解決策が具体的になった点も大きな気づきでした。これらの手法を組み合わせることで、より効果的なサービス作りが可能になると感じ、今後の実践に活かしていきたいと思います。 学びをどう活かす? 今日の学びでは、アイデア出しや製品コンセプト策定に関する重要なアプローチを学び、実践にどう反映させるかを考える良い機会となりました。ブレインストーミングやKJ法で個人では気づきにくい視点をチームで整理し、シナリオ法を通じてユーザーの想いや行動を深く理解することが、ユーザー中心のサービス作りに直結すると再認識しました。これらの知見を自分の業務に取り入れ、具体的な改善策を模索していく意欲が湧いています。

デザイン思考入門

仮説で解く!みんなの業務課題

なぜ業務量に差が生じた? 現在の業務は減少せず、同じ部署内で担当する業務量に大きな差があるという課題を感じています。この状況について、なぜそのような事態になっているのかを定性分析を用いて仮説を立て、解決に向かわせる方法を考えました。インタビューなどを通じ、単なる業務量だけでなく、その背後にある問題点を明らかにする必要があると考えています。 アンケートから何が分かる? 今回の演習で気づいたのは、アンケートの結果から、経験や年代にかかわらず共通の課題が存在することが分かった点です。この結果は、データをコーディングすることで抽出されたものです。しかし、実際に対処するデータは今回のものよりも複雑で量も多くなるため、分析の難易度は大幅に上がると感じました。また、課題設定において、単に現状の課題を把握するだけでなく、その課題があることによってユーザーがどのような回避行動をとるのかという視点を加えるという新たな発想も得られました。回避行動も一つの課題として捉え、解決策を検討することが求められると学びました。 定性分析で何が見えた? さらに、分析手法として定量分析と定性分析が存在し、特に仮説の構築が重要であることを再認識しました。定性分析は仮説構築に大いに役立つという新たな気づきも得られました。分析結果から浮かび上がった問題について、もし解決が進まなかった場合の条件を設定し、さらに課題を掘り下げる手法も有効であると感じました。なお、解決策を前提にして課題を定義しないという点についても、常に意識して取り組む必要があると理解しました。

データ・アナリティクス入門

受講生が綴るリアルな学びストーリー

仮説立ての理由は? 問題解決にあたっては、まず4つのステップに沿って検証を進めることが大切です。特に、データを見た段階で早急な結論に飛びつくのではなく、まず仮説を立て、その仮説を検証するプロセスを欠かさないようにしましょう。データはその見せ方によって印象が変わる可能性があるため、作成者の意図に左右されずに正しく理解することが求められます。また、フレームワークを効果的に活用することで、検証漏れや盲点の発見にもつながります。 分類・比較の意味は? 分析の基本原則としては、「分類して比較する」という手法が重要です。各データの確からしさや抜け漏れ、見逃しがないかを確認するために、データを適切に分類し、条件をそろえて比較する工夫が必要です。データをそのまま受け入れるのではなく、仮説を立てながら検証する姿勢を保ち、多様な分析フレームワークを活用することで、思い込みを排除して正確な評価が可能となります。 比較意識のポイントは? さらに、分析の際には分けて比較することを常に意識してください。比較対象を同じ条件の下で整理することで、普段気づかない新たな視点を得ることができ、より納得のいく分析結果に繋がります。 重要ポイントとは? 最後に、これからデータと向き合う上で絶対に忘れてはならないポイントを挙げると、まず「分けて比較する」という基本原則、次に仮説思考、そして What、Where、Why、How の4ステップに沿って考察することです。これらを意識することで、より論理的かつ的確な分析が実現できるでしょう。

クリティカルシンキング入門

広がる視野、変わる思考

どうして客観視できる? 受講を通して、物事を客観的に見ることの難しさと、自分の偏りに気づく機会が何度もありました。ディスカッションやグループワークの中で、他者の意見を聞くことで新たな視点や気づきを得ることができ、今まで気付かなかった点に気づかされました。 思考整理の秘訣は? また、頭の使い方に慣れていないと、情報を漏れなく重複なく整理するのが難しいと実感しました。しかし、受講を重ねる中で、自分の思考が体系的になり、うまく使いこなせるようになってきたと感じています。それにより、こうした成長を達成できる過程にワクワクとする気持ちも芽生えました。 問題原因はどこ? さらに、問題や課題に直面した際、根本原因をしっかりと分析し、より効果的な解決策を検討する手法は、今後の活動において大いに役立つと考えています。日常の業務においても、常に「今の考え方や方法が最適であるか」を見直し、試行錯誤を繰り返す姿勢が大切であると感じました。 未来展開をどう見る? プロジェクトをリーディングする際には、先の展開を見据えた対応が求められ、予測されるさまざまな事態に備えてリスクを低減する取り組みが必要です。この点でも、今回の学びは大いに生かせるものと感じています。 知識アウトプットは? 最後に、アウトプットの習慣の大切さを実感する一方で、自己の知識や考えが限られていると、アウトプットの質や幅にも影響が出ることを認識しました。今後は、偏りなく幅広いジャンルの知識や経験を身につけるため、日々のインプットを継続していきたいと思います。

データ・アナリティクス入門

目標達成の鍵は目的の明確化とデータ分析

目的の設定はなぜ重要? 分析を始める前に、目的の設定が非常に重要だと感じました。ビジネスにおいては、自分たちが他者のどんな課題を解決できるのか、そして自分たちの強み(競合優位性)は何なのかを明確にしてから、目標や目的を設定することが大切です。データ分析はクライアントの課題を解決するための手段の一つであり、データ分析の手法を学ぶこと自体を目的にしないように心がけたいと思います。 生存者バイアスにどう対抗する? また、生存者バイアスに引っ張られないコンサルティング施策の立案も重要です。成功事例を基準に判断し、成功しなかった事象を軽視する傾向があります。そこで、解決策として生存者と非生存者の両方に目を向け、結果全体のデータ分布を分析することが必要です。 複数視点を持つ重要性 複数の視点を持つことも大切です。肯定的な結果だけでなく、否定的な結果も含めて複数の結果を検討します。そのためには、失敗に関するデータを収集し、様々な立場の人たちからフィードバックを幅広く集めることが求められます。 自分の仮説をどう疑う? さらに、自分の考えを否定してみることも重要です。自分の仮説や結論に対して疑問を投げかけることで、新たな視点が生まれます。 プロセスに注目する理由は? 最後に、データを定点観測する際は結果だけに目を向けないことです。最終的な結果だけでなく、その結果に至るプロセスにも注目します。複数のタイムポイントを設定し、結果に至るまでの変動やどの時点で問題が発生したのかをデータに加えるように心がけることが大切です。

データ・アナリティクス入門

ビジネスにも活きる!ロジックツリー入門

ロジックで課題は見える? ロジックツリーを用いることで、曖昧だった課題や問題が階層分解や変数の使用を通じて、より明確に整理できると実感しました。また、ZoomなどのWeb会議の場で、ロジックツリーを活用しながら板書を行うことで、参加者が意見を出しやすい環境を作り出せることに気づきました。 損切りはどうすべき? サンクコストに関しては、新しい投資手段において、損失が出た場合の「損をしたくない」という心理的なバイアスが損切りを遅らせることがあると感じました。投資した株が収益性を見込めないのであれば、速やかに損切りを行い、収益性が期待できる他の株式に投資することの重要性を再認識しました。 データ選びの秘訣は? 以前、あるAI専業企業の方とお話しした際に「AIに入力するデータが現場の課題に適していないと、どれほど優れたAIであっても成果は上がらない。データ選定には全体の7割ほどの時間が必要」との意見を伺いました。この時、授業で学んだMECEや定量分析、ロジックツリーの重要性を実感しました。今後、工場内での課題解決を目指すAIのデータ選定にも、この知識を活用したいと思います。また、工場での品質管理の発表においても、ロジックツリーやMECEの考え方を活用して資料を作成したいと考えています。 競馬・テニスはどう活かす? また、競馬の予想にもロジックツリーや定量分析を活用したいと思っています。さらに、趣味の硬式テニスの大会後には、クラブの反省会でMECEなどの手法を取り入れられたら効果的だと感じています。

データ・アナリティクス入門

データ分析で学ぶ効果的な解決策の作り方

比較方法って何だろ? 「比較」の方法には、代表値を使って比べる方法や、グラフなどで視覚的に情報を整理して見比べる方法があります。 目的は明確か? 定量分析の中で最も重要なのは、まず目的や問いを明確にすることです。目的達成に関連する要素を考えて仮説を立て、その仮説を検証するために必要なデータを集めます。そのデータを基に、インパクトやギャップ、トレンド、ばらつき、パターンといった視点から分析を行います。 手法はどう? 分析のアプローチにはさまざまな手法があります。例えば、ギャップを示すには横棒グラフを、トレンドを示すには折れ線グラフを、分布を示すにはヒストグラムや円グラフを、パターンを示すには散布図を用います。また、数字としては単純平均や加重平均、幾何平均、中央値を用います。データの散らばりを見る際には、分散や標準偏差を参照します。回帰分析やモデル化を用いることで、データの関係性を数式化することも可能です。 因果はどう考える? 重要なのは、相関と因果を混同しないことで、データに基づく正確な分析を行うことです。学校の成績向上や遅刻削減、大学進学実績向上といった課題も、思い込みではなくデータを活用することで、より効果的かつ効率的に解決策を見つけられます。教育関連の文献やデータから情報を読み解く能力を養い、勤務先の学校の課題に対してロジックツリーを用い、仮説を立て、データを集めてグラフ化し、仮説を検証していくことが求められます。特に、度数分布と散布図は非常に有用ですので、積極的に活用していきたいと思います。

クリティカルシンキング入門

当たり前を疑い、論理で輝く

なぜ初めてで誤解した? クリティカルシンキングに初めて触れたとき、私はこれを「否定的に物事を見る思考法」と誤解していました。しかし、実際に学び、業務で意識して活用する中で、その本質は「物事を多面的に捉え、根拠に基づいて判断する力」であると実感しました。 どの意識が変わった? 今回の学習を通して、まず「当たり前だと思っていたことを疑う」ようになり、自分の考え方が大きく変化したと感じました。また、業務においては提案資料作成の際に、相手の立場に立って考察する意識が芽生えました。一方で、感情と論理を切り離す難しさも痛感し、事実と意見を明確に分けることの重要性を改めて認識する機会となりました。 どの根拠で提案する? 具体的には、提案力の強化に向けて、なぜその商品を提案するのか、どのような根拠があるのかを明確にすることの大切さを学びました。POSデータや市場トレンド、競合状況の分析に基づいた提案が、取引先の課題解決につながると感じています。 どうやって分析すれば? また、売上不振の際には、単純な感覚的判断に頼るのではなく、複数の視点から原因を分析する手法が有効であることを理解しました。こうしたアプローチにより、より具体的かつ説得力のある対策案を提示できるようになりました。 伝えるときの工夫は? さらに、社内での調整や報告においては、感情や主観が混じりがちな場面でも、事実と意見を明確に分けて伝えることが必要であると実感しました。これにより、会議や報告の内容がより論理的で理解しやすくなると感じています。

デザイン思考入門

一緒に見つける物流改革のヒント

配送改善はどうする? 物流系の新規顧客から、配送量が大幅に増加することに伴い、荷物搬入や配送ルートの最適化の要望がありました。顧客は「AIが作ってくれるといいな」といった漠然とした期待を持っていますが、実際には荷物搬入や配送ルートだけでなく、その周囲の人的なロジスティクスも含めた全体的な改善が求められています。そのため、AIに偏らず、顧客と共にさまざまな視点で検討していくアプローチが有効だと考えています。 現状把握はどう進む? 現段階では、初歩的なヒアリングのみが進められている状況です。3月中旬に終日現地で現状を把握する機会が予定されており、その情報を整理した上で議論を深める予定です。また、意思決定の分析手法も取り入れて、より具体的な提案に繋げていきたいと考えています。 本当の目的は何? 顧客はAI導入を絶対条件としていますが、実際には荷物搬入や配送ルートの決定に伴う残業時間の軽減を本当の目的としているのではないかという予感があります。そのため、初めから答えを求めず、多くのアイデアを出し合いながら気づきを得るプロセスが重要だと考えています。 対話が生む発想は? 発想を広げるためには、どうしても実務者が最初から解決策を提示しがちですが、グループで意見を交換しながら発散させることが効果的だと感じました。かつて恩師から「頭の中で様々な人とディスカッションすればいい」というアドバイスを受けたこともあり、実際に多くの人と対話しながら進めることで、よりよいアイデアが生まれるのではないかと思います.

データ・アナリティクス入門

小さな気づきが未来を変える

問題をどう分解する? 原因を明確にするためには、まず問題を各要素に分解することが重要です。たとえば、「目的は何か」「現状はどこに位置しているか」「なぜこの状況になったのか(仮説)」、そして「どのように解決するか」という視点で考察することで、全体像がより把握しやすくなります。 視点をどう変える? また、対概念を活用することで思考の幅が広がります。自分たちの要因にとらわれるのではなく、組織外の要因も視野に入れて見直すことで、従来の経験則や主観に偏らない新しい仮説を導き出すことができます。 PDCAをどう運用する? 仮説を実際に試しながら、少しずつPDCAサイクルを回す手法も効果的です。すべてを一気に実施してから「違った」という状況に陥るのではなく、柔軟に軌道修正を行うことで、スピード感を持った問題解決が可能になります。 要因はどう広げる? 日常的に認知から採用までのプロセスを分解して考察する中で、一部の要因に決め打ちしてしまい、他の可能性に目を向けられなかった経験があります。そこで、仮説を決める前にまず対概念の視点を取り入れ、原因を広く探る習慣をつけるようにしています。 逆の視点は何を促す? 採用集客のフェーズにおけるファネル分析では、前年対比や前四半期との比較、さらには得意な動きに対して何が起きているのかを議論するミーティングを実施しています。このような場では、ひとつの方向に偏りがちな意見に対し、意識的に逆の視点を取り入れることで思考を深め、より正しい方向付けを行うように努めています。

デザイン思考入門

枠を超えるシニアの発想革命

SCAMPERはどう効く? シニア社員のモチベーション向上を目指し、SCAMPERの手法を適用してみました。まず、Sの観点ではスポーツ分野のカウンセリングに類似したアプローチを用い、Cではカウンセリングメニューとの組み合わせを工夫しました。 各手法の意図は? さらに、Aでは僧侶の説法を応用することで新たな視点を取り入れ、Mではモチベーションが下がっているシニア社員を集め、意見交換の場を設けました。Pの段階では学術的な視点から指導を行い、Eでは宴席を設けることで、参加者それぞれの本音を引き出すことに努めました。最後のRでは、一定の指示を強制的に実施する手法を試してみました。 条件にとらわれない? この取り組みでは、問題解決の方法を必要性だけにとらわれず、前提条件に頼らずに幅広い視点で考えることの大切さを学びました。また、施策が対象者に満足感をもたらすかどうか、対象者の気持ちに寄り添って検討することが重要であると感じました。形式や方法に囚われず、自由な発想で取り組む姿勢も求められると実感しました。 デザイン思考の効果は? さらに、デザイン思考については、チームワークの活性化に寄与する技法として大変意義深いと感じました。特に、チームメンバーのアイデアを否定せず、常に視覚化してタイムリーに共有することで、全体の創造性を高められるという点に気づかされました。また、他業界や他分野に広く関心を持ち、豊かな語彙力を活用してアイデアを具体的に言語化することが、今後の課題解決においても重要であると感じました。
AIコーチング導線バナー

「解決 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right