クリティカルシンキング入門

切り口で解く学びと発見

どう分解する? データを分解して理解するためには、対象を個々の要素に分けることが重要です。特に、When、Who、Whatといった切り口を活用することで、分析がスムーズに進むと感じました。問題に直面した際には、まずこれらの視点に当てはめることを意識する点が良いと思います。 分析は広がる? 今回の総評では、具体的な手法としてWhen、Who、Whatを用いながらデータを分解するアプローチが評価されています。さらに、より多角的な視点を持つことで、分析の幅が一層広がる可能性があると感じました。 他の切り口は? また、思考を深めるための問いとして、WHO、WHAT、WHEN以外にどのような切り口が考えられるか、またMECEに分解する際に意識すべきポイントは何かといった疑問が提示されました。これらの問いかけは、多面的にデータを観察する習慣を身につける上で大切だと考えます。 管理法はどう? プロジェクト管理においても、この手法は進捗管理や不具合管理に活かせるでしょう。既に使用しているツールの補助として、まずはWhen、Who、Whatを当てはめることを意識し、課題の抽出に役立てることができます。また、グラフ化も可能なデータ収集を心がけ、評価のポイントを事前に決めることで、より効果的な分析が期待できるでしょう。

データ・アナリティクス入門

理想と現状のギャップで見える未来

理想と現状はどう違う? 何か問題が生じると、つい目の前の課題にとらわれがちですが、理想の状態と現状を比較することこそが、本当の問題や課題を明確にするために重要だと感じました。これまで漠然と考えていたことが、言葉として整理され、しっかりと理解できるようになったのが印象的です。 整理解決の手法は? また、整理された問題に対しては、ロジックツリーやMECEの手法を用いることで、より正確かつ詳細に課題を捉え、その解決策へとつなげる重要性を実感しました。単に現状を把握するだけでなく、目指すべき姿に向けた具体的なアプローチを考えるプロセスが、問題解決において効果的であると確信しています。 評価をどう転換する? さらに、現状の評価についても、単にマイナスな状況を改善するのか、あるいはプラスに転換するのかという視点を持つことで、解決策がネガティブな側面だけでなく、ポジティブな側面にも働きかける可能性があることに気付きました。例えば、売上が順調に伸びている現状であっても、どの要因がその結果を生み出しているのか、数字だけでは説明がつかない部分があると感じました。こうした状況では、現状から目標に至るまでの具体的なアプローチを詳細に分析することにより、現在の売上についても明確な説明が可能になるのではないかと考えています。

データ・アナリティクス入門

実践で切り拓く学びの扉

A/Bテストは何が見える? A/Bテストは、2つの施策を比較し、どちらがより適しているのかを実際のユーザー行動に基づいて判断する有効な手法です。アメリカ大統領選などの大規模な事例でも用いられている点が印象的で、仮説だけでなく実績に裏打ちされた評価がとても参考になりました。 演習で何を実感した? また、演習を通じて、問題の各要素をステップごとに分解することで、どのデータを抽出すればよいかが具体的に見えてきます。こうしたプロセスは、原因の特定を容易にし、問題解決に向けた新たな視点を提供してくれました。 業務再構築はどう進める? 社内業務の再構築にあたっては、まず課題を洗い出し分類した上で、それぞれの課題のどこに原因があるのかを要素ごとに分解して検証する方法が効果的だと感じました。Howに飛びつく前に、What、Where、Whyの各段階を踏むことで、より論理的に解決策を見いだすことができると思います。 原因探しで見つけたヒントは? さらに、課題に対する取り組みでは、要素を段階ごとに書き出す過程が、問題自体の理解を深め、原因の特定に大いに役立ちました。その後、適切なフレームワークを用いて目的に沿った仮説を立て、多角的な視点から検討することで、より実践的な解析が可能になると実感しました。

リーダーシップ・キャリアビジョン入門

部下から上司への伝え方の極意

実践学びをどう活かす? 実践演習を通じて学んだ内容を、日々の行動に一つずつ落とし込むことの重要性を改めて実感しました。効果的なフィードバックを行うためには、事実に基づき、相手の感情に寄り添い、自分がしっかりとフォローしている姿勢を示し、相手が納得しているかどうかが重要です。また、相手のモチベーションを高める話し方を意識することも大切です。 上司への報告はどう? 現在の立場を考慮して、部下である自分が上司に情報を伝える方法に注意を払いたいと思います。振り返りの中では、以下の点を意識して進めます. - 部署の方針に沿った目標を設定できているか - 振り返りの際、事実に基づき説明できているか - 今後の改善点について話せているか - 上司にサポートしてほしい内容を具体的に伝えているか 評価をどう高める? 自分の現状を客観的に把握し、目標設定が上司や会社の期待とズレていないかを確認しながら、積極的に報告や相談を行うことで評価につなげたいと考えています。今回の学びの中心は、リーダーとして部下に寄り添い相手を理解する視点でしたが、それを自分の場合は「上司に理解してもらうためにどのような行動をとるべきか」に置き換えて学ぶことができました。今後、リーダーになった際には、この研修で得た内容を活かして実践していきたいです。

データ・アナリティクス入門

仮説から解決へ!実践の軌跡

問題解決はどう進む? 問題解決の4ステップとして、まず「what」(問題の明確化)、次に「where」(問題個所の特定)、その後「why」(原因の分析)、そして「how」(解決策の立案)という流れで整理する方法が紹介されています。各ステップが順序立てて説明されているため、全体像を把握しやすく、実際の問題へのアプローチがより明確になります。 仮説検証はどうする? 仮説を立てる際には、複数の仮説を同時に検討し、それぞれに網羅性を持たせることがポイントとして挙げられています。また、仮説を検証するために、どの比較指標を選ぶのかを意識してデータの評価を行う大切さも感じました。 データ収集はどう考える? データを収集する際の注意点として、まず「誰に聞くか」と「どのように聞くか」を慎重に考え、比較可能なデータの収集を怠らないことが重要です。さらに、反論を排除するためにも、対立意見をも十分に考慮した情報収集が求められています。 分析計画はなぜ大切? 最後に、分析に取りかかる前に、設定した仮説を反映した分析計画表を作成する意義が強調されています。特に、経験の浅いメンバーと共に仮説の設定プロセスや必要なデータ収集、効果的な分析方法について議論することで、より深く問題解決に臨む体制を整えることが可能になります。

データ・アナリティクス入門

ゼロから始める客観分析術

どの分析方法が有効? 問題を特定する際のアプローチについて、分類や分解の手法、考え方の基本を身につけることで、さまざまな課題に対してゼロから悩むことなく、正しい分析を進められると実感しました。学習の中ではプロセスの分解に重点を置いていましたが、他の方法についても幅広く覚えておきたいと考えています。 提案の見直しは必要? 実業務においては、顧客への提案で解決策ありきで進めてしまうケースがあり、都合の良い分析になってしまうことがあります。こうした提案は初めは良い印象を与えるかもしれませんが、本質的な課題解決にはつながらず、長期的には評価を下げるリスクがあるため、業務の進め方を見直す必要があると感じました。まずは、これまで学んだ分析のステップに基づき、客観的かつ正確な分析を実行した上で、最適な解決策を提案することが重要だと思います。 行動計画はどう決める? 具体的な行動としては、実業務で特定のサービスに依存せず、客観的で正確なデータ分析を徹底し、複数の選択肢を比較検討することが求められます。そして、適切な判断基準を設定して最適な解決策を提案することを意識します。加えて、提案後の振り返りを行い、実施した解決策の効果をデータで検証する仕組みを整えることで、継続的に提案の機会を創出できると考えています。

アカウンティング入門

人材投資の裏側を会計が解き明かす

財務諸表の役割は? 財務諸表は、経営状況を把握し、意思決定に活かすための定量的な情報をまとめたものです。これによって、利益が出ているかどうかや、資金の出所や循環に不自然な点がないかを確認できます。また、顧客に提供する価値、そのために必要な活動、そしてそれを支える人・モノ・カネ・情報といった資源が、適切な資金の流れの中でどのように機能しているのかを意識することが重要です。 人材価値の捉え方は? 私が担当する人材発領域は、成果や価値を数値化しづらい分野です。それでも、「人への投資がどれだけ企業価値につながるか」を会計の視点で翻訳できるようになりたいと考えています。たとえば、人件費については単なる「コスト」ではなく、「資本化すべき投資」として説明し、教育研修については「費用対効果(ROI)」の観点から大まかに評価しつつも、ROI数値に固執しすぎない柔軟な考え方が求められると捉えています。 非財務価値をどう見る? さらに、非財務的な価値を貸借対照表や損益計算書といった財務指標の構造に結び付けて理解することも大切です。現状の財務諸表と、目指すべき未来の財務諸表をクライアントと共に思い描き、そのギャップを埋めるための人材要件を具体的な数字で示せるよう、今後の取組みに活かしていきたいと考えています。

データ・アナリティクス入門

同条件で実感!比較のヒント

どうして比較するの? 分析の基本は「比較」にあります。しかし、比較を行う際には、正しい対象同士を照らし合わせなければ、正確な結果は得られません。たとえば、単に全体の平均値を比べるのではなく、同じ条件下(Apple to Apple)での比較を意識することが重要です。具体的には、ある施策の効果を評価する場合、対象は施策を受けたグループと、受けていないグループに限定し、その効果が明確に反映されるように設定する必要があります。また、比較を行う際は、外れ値の有無やデータの対象数、そして分析の目的に沿った比較がなされているかどうかにも注意を払うことが求められます。 比較の実践はどう? 現在、売上やマーケティングの集計そのものはしていませんが、常に「比較」を意識しながら、比較対象が正しいかどうかを確認する視点を持つよう心がけています。目的に合った分析であるかを常に考え、比較した結果をどのように的確に示し、他の人にわかりやすく伝えるかという点が大切だと思っています。 結果提示の工夫は? 今週の学習内容については、特に疑問に感じた点はありませんでした。ただし、グラフや推移グラフ以外の方法で、他の人に理解しやすい分析結果の提示方法について、どのような工夫がされているのか知りたいと感じています。

リーダーシップ・キャリアビジョン入門

本音と目標で切り拓く未来

エンパワーメントはどう活かす? エンパワーメントを実践する際、まずはその適用が適している業務と、そうでない業務が存在する点に気付かされました。自分に余裕を持ちつつ、相手の本音を正確に理解することが、効果的なエンパワーメントの基本だと感じます。 具体的目標はどう設定? 目標設定においては、できるだけ具体的で定量的な目標を立てることが重要です。6W1Hの観点を取り入れながら、メンバーに対する問いを多用し、プロセスに参加してもらうことで、たとえ同一内容の目標であっても、当事者意識が大いに高まると実感しました。 目標達成の障壁は? また、目標に対するパフォーマンスが思うように上がらない場合は、設定された目標について「理解不足」「実行困難」「意欲の低下」のいずれかが原因であることを明確にし、適切な打ち手を講じる必要があると感じました。 営業現場はどう変わる? 一方で、特に営業の現場においては、上から与えられた目標をこなすだけで満足してしまい、プロセスへの積極的な関与を拒む傾向が見受けられます。営業数字に左右される評価制度の中では、仕事の意義や背景の理解に割く時間さえも「時間の無駄」と捉えられる現状があり、この点については今後、具体的なアプローチ方法を議論していく必要があると感じています。

クリティカルシンキング入門

問いが導く自己成長ストーリー

問いの重要性は? 「問い」から始めるという視点が、今回の学びの中で特に印象に残りました。まず、常に「今何を考えているのか」を自分自身に問いかけることで、単に身近な情報に頼るのではなく、目的や目標を明確にしながら考える重要性を再認識しました。 自己評価の見方は? また、思考のプロセスにおいては、自分の考えを客観的に評価する「もう一人の自分」を育てることが大切だと感じました。具体と抽象の動きを意識的に行うことで、より広い視点からアイディアを整理・展開し、最終的に論理的な結論に導くための自己チェックが可能になります。 実践から何を学ぶ? 具体例としては、week1で実践した「自分の思考をチェックするもう一人の自分を育てる」と「具体と抽象のキャッチボール」を通じて、発想を広げる効果を実感しました。また、week6に学んだ「今何を考えているのかを自問する」手法は、常に問いを軸に考える習慣の大切さを改めて感じさせるものでした。 議論はどう進む? 普段の議論や施策の検討においても、まずは明確な問いを立て、その問いに沿って具体的なアイディアと抽象的な概念を行き来させながら自分自身の考えをチェックすることは、よりクリエイティブで実効性のある結論にたどり着くための有効な方法だと感じます。

データ・アナリティクス入門

仮説×分析で開く解決の扉

仮説立案の基本は? 仮説には、結論に至る仮説と問題解決に焦点を当てた仮説の二種類があり、問題解決の仮説では「What(問題は何か)」「Where(どこに問題があるか)」「Why(なぜ問題が発生しているのか)」「How(どうすべきか)」の順序で検証することが基本と学びました。 フレームワークは効く? また、仮説を立てる際には、3C分析(市場・顧客、競合、自社)や4P分析(製品、価格、場所、プロモーション)といったフレームワークの活用が有効で、これにより具体的かつ詳細な仮説を構築しやすくなると理解しています。 効果検証はどう? 現在、交通系ICカードで決済するとポイントが10倍になるキャンペーンの効果検証に取り組んでおり、決済回数や決済金額の増加などを評価指標としています。この分析に際しては、問題解決の仮説を立て、3C分析や4P分析を積極的に取り入れることで、データ分析の精度を向上させることを目指しています。 分析精度を上げるには? 所属部署では専門のデータ分析担当者がおらず、これまで独学で自己流に分析を行ってきました。今回学んだ仮説の立て方やフレームワークをさらに活用し、数値の取り方や検証方法を体系的に整理することで、分析の精度を一層高めたいと考えています。

データ・アナリティクス入門

現実と夢のギャップを楽しむ学び

目的意識はどうする? 常に目的を意識することが大切です。ありたい姿を明確にし、現在地を把握した上で、そこからのギャップを見出すことが出発点となります。その差分に対して必要な課題を洗い出し、解消のための具体的な打ち手を決定し、実行計画を立てて自律的に取り組むプロセスは、学習や自己成長の場面でもシンプルに機能します。 アウトプットの考察は? また、様々なアウトプットに触れる際には、どのデータがどのような目的で、どのように加工されているのかを考えることが重要です。これにより、他者のアウトプットから自分なりの工夫やアイデアを吸収し、活かすことができます。 顧客提案をどう見る? 顧客提案の際には、次のシナリオ設定のフレームを基本として実施します。まず、目標や目的の目線を合わせ、現在地を確認し、目指すゴールを共有します。次に、課題を共有し、解決手法の提案とその効果検証方法を確定させ、具体的な打ち手を実施します。最後に、全体を振り返ることが、次への改善につながります。 自己評価は何が肝心? さらに、期ごとの自己の振り返りや査定評価資料の作成にも、同じフレームワークが生かせると考えられます。日々の努力の積み重ねが明るい評価へとつながることを意識し、着実に成果を上げることを目指しましょう。
AIコーチング導線バナー

「評価 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right