データ・アナリティクス入門

データが効く!新たな分析視点を実践

代表値はどう役立つ? 今まで、分析に代表値をほとんど使ったことがなかったと反省しました。業務で特に活用できそうだと思ったのは、加重平均と中央値です。 加重平均でどう評価? まず、加重平均を販売施策の効果分析に利用しようと思います。施策ごとに異なる予算をかけているため、予算に応じて効果を加重平均で評価します。これにより、施策の効率性を測り来年度の販売施策立案に活かせます。具体的には、販売施策の実績を「かかった費用」「成約金額合計」「販売台数」「粗利益額」「費用対効果」などの項目でまとめておきます。そして、年度内に加重平均で評価し、費用対効果の良かった施策とその要因を明らかにします。 中央値はどう活かす? 次に、中央値をSNSマーケティングの効果測定に役立てます。たとえば、Instagramにおける直近一年のインプレッション、リアクション、アクティビティをまとめ、中央値を算出します。これにより、通常の反応水準を把握し、外れ値に該当する投稿を見つけて分析し、今後の投稿戦略に活用します。具体的には、外れ値を見つけ、増やしていくべき投稿内容や逆に今後は減らしていくべき投稿の傾向を把握します。

クリティカルシンキング入門

データ分解で見える!思考の旅路

どうやって切り分ける? 物事を分割して考える際、結果が見えないこともありますが、それ自体が「何もわからない」という結果を示しているため、意義はあります。その上で、次の切り口を探ることが重要です。初めの段階では大きく切り分けていく方が良いですが、最初から最適な切り口を見つけることは難しいでしょう。そのため、見つけた切り口からさらに広い視点の切り口を探る往復作業が効果的です。 情報はどう加工する? 情報はまず収集し、それを目的に応じて変形させることが重要です。そして、それに基づき次に進むべき方向を考えます。例えば、自社と他社の比較や、今年度の新人の離職や休職の状況を把握し、施策についての成果を確認します。研修後の全体的な理解度や企画時の要因分析、アンケートの結果整理なども同様に重要なプロセスです。 研修後はどう比較する? 特に今年度の新人の離職・休職については、理由別にデータを収集し、昨年度と比べて施策の効果を評価します。また、研修後の理解度把握では、各個人の研修中のデータを整理し、現場配属後の成果と結びつけ、成果が出ている人とそうでない人との違いを比較することが求められます。

データ・アナリティクス入門

グラフが語る数字の物語

グラフ化の効果は? データ分析では、まずグラフ化して数値を視覚的に確認することで、比較がしやすくなる点が基本だと学びました。これにより、数字の背後にある特徴や傾向が一目で把握できるようになります。 代表値の選び方は? 講義では、データの代表値として「単純平均」「加重平均」「幾何平均」「中央値」があること、そしてデータのばらつきを示す「標準偏差」の重要性を改めて認識しました。どの平均値を用いるかは、分析の目的に応じて選ぶ必要がある点も印象的でした。 必要な基礎理解は? 普段の業務では、無意識のうちにデータ収集やグラフ化を行っていたため、なぜそれが必要なのかを体系的に学ぶことができたのは大変有意義でした。講義を通して、さまざまな角度からデータを評価できる手法を身につけることができました。 多角的評価の理由は? また、クライアントや社内のデータを用いたマーケティングやプロモーションの計画では、ピクトグラムや棒グラフで全体感を把握した上で、単純平均だけでなく「加重平均」「幾何平均」「中央値」「標準偏差」などを組み合わせ、多面的な視点からの分析が重要であると実感しました。

データ・アナリティクス入門

数値の裏に潜む学びのヒント

データ比較の基本は? データ分析は比較という原則に基づいており、数値同士の比較を通してデータの実態や分布を探る作業です。まず、データの中心に位置する代表値を把握し、その上でデータがどのように散らばっているかを確認することが基本となります。代表値としては、単純平均のほか、加重平均、幾何平均、中央値が用いられ、散らばりを評価するには標準偏差の算出が有効です。 業務で分布を確認すべき? 普段の業務においては、データの分布を確認する試みが十分になされていないと感じます。分布を求めるためには、まずデータを分類するための項目が必要です。そのため、データ加工を前提として目的を明確にしながら項目を選定することが重要です。分析の目的と加工という手段を意識して検討することが、成功のポイントだと実感しました。 算出方法をどう活かす? 今回紹介された算出方法を効果的に活用するためには、標準偏差の算出、ヒストグラムの作成、加重平均や幾何平均を使いこなすスキルが求められます。今後は、これらの技法を実践的な練習問題などで訓練し、習得していきたいと考えています。

データ・アナリティクス入門

小さな疑問から大きな発見へ

何故課題意識は必要? 分析の目的や課題意識を明確にすることで、日常の業務だけでなく、普段目にする分析データについても「なぜ?」と考える習慣が身につきました。例えば、ニュース記事で医師不足が取り上げられる場合、その背後にある分析の意図や解決すべき課題を自分なりに考察するきっかけとなりました。 施策評価はどう? また、業務で複数の施策を企画・実行する中で、効果を評価するための分析が重要だと感じています。中長期的な戦略の実行に際し、連続性のある施策を実施するためにも、小さな施策のブラッシュアップを繰り返す必要があると考えています。たとえば、アプリへのログインプロセスを細かく分解し、特に初回ログイン率の向上に向けた分析を進めています。 情報取得は万全? さらに、戦略立案の段階から必要な情報やデータが適切に取得できているかを精査し、取得できていないデータにはタグ付けなどの対応を実施して、常に分析が可能な状態を作り上げています。同じ条件で定期的にログの確認やレポート作成を行う仕組みを整備することで、継続的な定点観測が可能になりました。

データ・アナリティクス入門

データ分析で成果を上げるコツは?

要因分析を効果的に進めるには? 要因分析の際には、プロセスを細かく分解して考えることが重要です。解決策を選ぶ際には、判断基準を設けることが必要で、例えばコストやスピードを基準に評価を行うと良いでしょう。 A/Bテストの活用法とは? 方法の効果を確かめる際には、A/Bテストという手法が有用です。A/Bテストでは、可能な限り条件を揃えて比較実験を行うことが大切です。要因分析時には、できるだけ細分化を行うことが求められます。すべての状況がわからない中でも、仮説を立てて細分化を試みると良いでしょう。 解決策選びの優先順位はどう決める? 解決策の選択においては、判断基準や優先順位を整理することが重要です。効率が良い方法やスピードを基準として評価することが望ましいです。報告資料を作成する際は、自分の中でステップを細分化して理解し、その上で優先順位を付けて表現することが大切です。 条件を揃えるポイントは? 判断基準は常に上司と擦り合わせながら進めるべきです。また、比較を行う際は、可能な限り条件を揃えることを意識すると良い結果が得られます。

データ・アナリティクス入門

分解で見えた解決のヒント

進行中の問題は何? プロジェクトの進行において問題が発生した場合、まずはプロセスをできるだけ詳細に分解し、ボトルネックを見つけ出すことで原因を明確にし、解決策の糸口を探していきたいと考えています。 複数原因はどう整理? 一方で、原因が複数存在する場合には、さまざまな対策案を検討する必要があります。実際の業務ではA/Bテストの実施が少ないかもしれませんが、実施する際には1要素ずつ、できる限り条件を揃えて行うことを心掛けたいと思います。 全体像はどう掴む? また、問題の原因を探索する際には、プロセスを細かく分けることでボトルネックに注目し、問題の全体像を把握するよう努めます。 評価基準は納得? さらに、解決策を検討する場合は、適切な判断基準を設定した上で各案の評価を行います。その際、判断基準の重要性や重み付けについても十分に考慮しながら進めることが重要だと考えています。 A/Bテストはどう実施? A/Bテストについては、条件を一致させた上で1要素ずつ実施するようにし、比較が効果的に行えるよう留意していきたいと思います。

デザイン思考入門

組織の常識を超えるデザイン思考

組織支援の新たな視点は? 自分の業務は法人向けのガバナンス支援や規制対応支援であり、製品開発とは距離があるため、一般ユーザーの視点や共感を求められることはほとんどありません。そのため、組織としての対応やあり方を重視する中で、あえてデザイン思考のアプローチを適用することで、予想外の効果が得られるのではないかと感じています。 組織論で何を学ぶ? また、自分の日々の業務は基本的に組織論に基づいており、直接的な個々への共感よりも、組織設計や評価を重視して行われています。このような出発点での業務が、たとえその良し悪しが直ちに判断材料とならなくとも、将来的に役に立つ知見となると改めて気付かされました。 ユーザー体験の真意は? さらに、デザイン思考の基礎であるユーザー体験や共感という概念にはなじみがあり、漠然とした理解はあったものの、実際に登山装備の製品開発における事例や、身近な企業がどのような努力をしているのかを調べ考察する過程で、自分の業務や企業との関連性を新たに感じるとともに、理解が深まり、想像力が強化されたと実感しています。

データ・アナリティクス入門

数字に秘めた学びの軌跡

データの真意は何? 実際のデータをただ眺めるだけでは、その背後にある示唆を十分に引き出すことは難しいです。データの意味を正しく理解するためには、適切な分析手法を用いる必要があります。 率の活用でどう変化? 単純な数字の比較だけでは良し悪しが明確にならない場合もあるため、「率」という指標を活用することで、より深い理解が得られることがあります。 体系的整理は有効? 問題の原因を探る際には、直感だけで原因を挙げるのではなく、体系的なフレームワークを使って整理することが効果的です。この方法により、抜け漏れなく各要素を洗い出し、論理的な仮説を立てやすくなります。 最適案の選び方は? また、複数の選択肢から最適な案を選ぶためには、コストや効果、運用負荷といった各比較軸に重みをつけ、数値化する手法が重要です。これにより、客観的な評価が可能になり、意思決定の質が向上します。 業務判断はどうなる? 日常業務においても、フレームワークや評価軸を意識して活用することで、論理的かつ効率的な判断を行うことができるようになります。

データ・アナリティクス入門

問題発見力を鍛えよう!課題形成の基本

問題発見力を高めるには? 問題を発見し、その問題点を把握する力、すなわち問題発見力が重要です。ありたい姿と現状のギャップを見える化し、課題形成力を高める必要があります。現状を定量的・定性的に把握するためには、数値化や見える化が欠かせません。目的や仮説をイメージしつつ、行ったり来たりしながらも、ゴール目標に向けて時間軸を持って到達することが大切です。 採用市場で競争優位を得る方法は? 採用市場の変化においては、問題発見と課題形成のプロセスが重要です。この過程で優先度や重点化の思考を入れ、重要性や緊急性の観点からもデータを分析します。それによって、競合他社との優位性を評価しながら、効果的かつ先進的な人材獲得の取り組みを推進することができます。 幸せのため働く姿勢の意義は? 「誰かの幸せのために、まっすぐはたらく」という考え方を体現し、シンプル、オープン、フェアの観点から積極的に採用市場を分析します。将来の基幹人材の獲得を目的に、ゴール(6月)から逆算してセグメントごとの実行計画を立案・推進することが求められます。

データ・アナリティクス入門

仮説と会議で拓く未来戦略

テスト実施に何が大事? ABテストについては、これまで営業部門で実施した結果を共有した経験がありますが、今回主体的に実施する際の留意点を改めて学びました。特に、テストを行う際には目的と仮説を明確にし、しっかりとした検証項目を設定することが重要だと感じました。今後の新規事業展開において、これらのポイントを意識して進めていきたいと思います。 評価の選定はどうする? また、複数の解決策を効果と費用のXY軸で評価した経験から、評価基準をさらに1~2項目増やし、数値化することで、総合評価に基づいた優先実施策の選定に取り組んでみたいと考えています。評価基準を選定する際にブレインストーミングを交えた議論を行う過程も楽しみです。 会議計画の進め方は? さらに、月次の経営会議において、各営業部門が問題抽出、原因究明、解決策の洗い出し、実施試作の選定、アクションプランの作成、進捗共有という一連のプロセスを推進する会議計画を策定することを提案し、年度内に効果検証を実施する案についても、社内で相談を進めていきたいと考えています。

データ・アナリティクス入門

議論が生む新たな発見

多角的視点で何が見えた? 学んだ内容を振り返り、複数の視点から議論することで、これまで見落としていた点や新たな切り口、さまざまなアプローチ方法に多くの気づきを得ることができました。今後は、このような環境を社内にも広げ、各自が自走できる体制を整えていきたいと考えています。 上司の依頼はどう活かす? 日常業務では上司からデータ分析の依頼を受けることが多く、上司の興味関心と実際の事業課題を明確に切り分け、目的意識を持った意味ある分析が事業に貢献できるような環境作りが求められると実感しました。また、データ収集がそれ自体の目的にならないよう、適切なデータの収集と活用に努める必要があります。 実行策にどうつなげる? このため、まずはビジネスプロセスマップやビジネスモデルキャンパスを作成して全体像を把握します。次に、関係者間で課題の所在を共通認識として持ち、データ分析を通じて課題の発見や優先順位、重要度を明確にします。最後に、分析結果に基づき実行策を評価することで、より効果的な改善策を進められると考えています。

「評価 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right