データ・アナリティクス入門

仮説を超えて広がる学びの可能性

仮説はどう考える? 仮説を立てる際には、ただ闇雲に考えを巡らせるのではなく、3Cや4Pといったフレームワークを有効に活用することを学びました。その上で、仮説は複数立てることが重要であると感じています。 本当に必要なデータは? また、データ収集に関しては、まず既存のデータを検討し、不足している情報がある場合に新たなデータを集める必要があると理解しました。立てた仮説に都合の良いデータだけを選ぶと説得力が欠けるため、注意深くバランスをとることが求められます。 問題の原因は何か? さらに、業務における障害分析では、問題の解決に向けた仮説の立案が主な目的となります。現状で行っている真因分析とも連動し、What、Where、Why、Howのプロセスを意識して問題を深く掘り下げることが必要だと感じました。 実践で学ぶヒントは? 実際、日々発生する障害や事象について原因を深掘りし、複数の仮説を検討する癖をつけることで、経験を積んでいきたいと思います。ただし、データ収集の方法には工夫が必要であり、過去の事例をカテゴリー分けするなど、データを整理・加工する手法の改善が求められると考えています。

クリティカルシンキング入門

熱くも冷静に!自分を見つめる瞬間

本当に目的は達成できた? 目的を見失わず、考えた答えが本来望んでいた結果に至るようにする必要性を実感しました。人は「考えたい」「考えやすい」という性質があるため、無意識のうちに偏った考えに陥っていたことを、自分の過去の経験から認識しました。 批判思考の本質は? また、クリティカルシンキングは、一朝一夕で身につくものではなく、日々意識して考え方を変えていく努力が求められます。ここでいう「クリティカル」とは、他人を批判するのではなく、まず自分自身に向けられるものだと理解しました。 会議中の一工夫は? 具体的には、ミーティング中に自分の考えや発言が偏っていないか、さまざまな角度から検証することが重要です。上司や部下との報連相、コミュニケーションの場面でもこの姿勢が活かされると感じます。また、一日の終わりに、その日に学んだことをどのように活用したかについてメモを取ることも有効です。 感情のコントロールは? 議論の中で熱くなったり、感情的になる場面では、特に偏った考えに陥りやすいと思います。このような場合、どのように冷静さを保ち、自分を客観的に見つめる方法があるのでしょうか?

クリティカルシンキング入門

立ち止まり、疑問を力に変える

どう深堀りすべき? 分解のプロセスでは、目に見える事実だけに当てはまらず、常に疑問を持って深堀りすることが、課題の本質を把握する上で非常に重要であると理解しました。実際の業務ではスピードが求められるため、予想通りのデータが出ると次のステップへと急ぎがちですが、一度立ち止まって、より深く検証する姿勢を大切にしていきたいと思います。 真実をどう捉える? また、品質不具合や設備のトラブルにおける再発防止の取り組みにこの分析を活用しています。結論ありきの報告が多く、グラフの見方などを深く疑っていなかった点に気付きました。今後は、別の切り口から事象を捉えることで、これまで見過ごしていた現実を明らかにできないかという問いを持つように努めたいと考えています。 原因究明の本質は? 過去の経験から、品質不具合や設備トラブルの原因を掘り下げることで、根本原因が共通しているケースが多いと感じています。特に、ある地域では、事象の特定は得意である一方、原因究明が軽視されがちな傾向があるため、日々の業務の中でさらに踏み込んだ分析を実践し、原因究明の体質を根付かせたいと再認識しました。

データ・アナリティクス入門

数字に潜む新発見と未来への一歩

平均値の使い方は? 単純平均だけで判断すると、外れ値の影響でデータの見誤りが発生する可能性があることに気づきました。これに対して、加重平均や幾何平均についてはこれまで自分自身で使った経験がなく、今後習得していきたいと考えています。これまで、適材適所の数値の出し方をあまり意識していなかったという反省もあります。 データ分析はどう? セミナーの申込者数やWebからのコンバージョンの分析において、年商別や案件化金額などのデータを、散らばりや加重平均、幾何平均を取り入れて比較分析したいと考えています。具体的には、同じソリューションのセミナー同士や異なるソリューション間の比較、時期を分けた比較、Webとセミナーでのリードの比較など、さまざまな切り口で分析を行いたいと思います。 比較検討の進め方は? まずは、参加者が多く、分析しやすい直近のセミナーを対象に、年商別の申込者数や過去のセミナー参加数を、前回同じテーマで実施したセミナーと比較してどのような変化があるかを検討する予定です。その結果を踏まえ、他のソリューションのセミナー分析にも展開していく狙いです。

データ・アナリティクス入門

仮説からはじまる成功のヒント

どうやって最速解決する? 課題解決においては、最短かつ最適なルートでゴールに到達することが他者に対する優位性につながると考えます。そのため、場当たり的な対応や、全体をむやみに検証して無駄にコストや時間を費やすことを避けるためにも、まずは仮説を設定することが必要です。いかに精度の高い仮説を立てるかが重要であり、そのためには適切な知識、経験、そして考え方が求められます。 課題の本質は何? また、課題に取り組む際は、まず何が課題であるのかを適切に理解し、把握することが不可欠です。課題が不明確であれば、得られる答えも曖昧になってしまうからです。その上、対象となるビジネスなどのドメイン知識や過去の経験に基づき、適切な仮説設定に注力していきたいと考えています。 経験は十分伝わる? すでに実践している部分もありますが、さらなる精度向上とスキルアップを図るために、フレームワークと呼ばれる考え方のツールを導入して、より高い精度を目指していく所存です。今回学んだ3Cや4Pを基本とし、今後さらに他の手法も取り入れながら、知識と経験を積み重ねていきたいと思います。

データ・アナリティクス入門

柔軟な仮説が未来を拓く

初期仮説の危険性は? 仮説は初めから決めつけず、幅広い視点で持つことが大切です。あらかじめ仮説を立て、それに基づいて検証するため、もし初期の仮説に誤りがあれば、その後の工程にも大きな影響が出る可能性があります。 計画的データ収集は? また、仮説を検証する際には、必要なデータを計画的に収集することが求められます。必ずしも全ての情報が揃っているとは限らないため、誰にどのように情報を収集するか、目的に沿って進める必要があります。 売上データで何発見? 日々の業務で売上データを見る中で、発生した事象に対してまずは幅広く仮説を出すことが有効だと感じました。これまで漠然とした感覚で仮説の検証に取り組んでいたため、今後はより意識的に取り組むことが必要だと思います。 周囲の意見は頼も? 仮説を立てる際は、自分一人で考えるのではなく、周囲のメンバーからの意見も取り入れ、網羅性を高めるよう努めます。過去の経験や先入観をなるべく排除し、フラットな視点で物事を俯瞰することを心がけるとともに、仮説検証の目的を踏まえて最適なデータ収集方法を選択していきます。

データ・アナリティクス入門

データ分析で業務効率化の新発見!

データ分析で新視点を得るには? データ分析とは、比較を行うことで新たな視点やアイデアを引き出すことが可能であると学びました。同じ基準や条件を用いることで効果的に分析ができ、新しい発見に繋がることが特に印象的です。 効率化への第一歩は? これまでの仕事では、何となくデータを用いながらプロジェクトの進捗を管理していましたが、新しい職場では積極的にデータの可視化を取り入れ、業務の効率化を図りたいと考えています。以前は過去のデータより直近のプロジェクトの状況にのみ焦点を当てていました。 なぜデータ可視化が重要? 日常業務の中で、業務上必要がない場面でもデータを可視化することは重要だと考えていましたが、既存のシステムやBIツールに頼りがちでした。しかし、自ら業務プロセスをデータ化することが、業務のパフォーマンス向上に繋がるのではないかと考えています。 ダッシュボード作成スキルをどう磨く? 現在は過去のプロジェクトマネジメントの経験を活かし、会社の既存のダッシュボードを一から作成するスキルを身につけるために勉強を続けています。

リーダーシップ・キャリアビジョン入門

小さな変化に気づく上司の挑戦

上司役で何を学んだ? ロールプレイングで上司役を担当した際、日常的な癖がはっきりと表れる自分に驚かされました。このような事象は実際の日常でも頻繁に起こると感じます。部下側の心情も公開された状態で取り組んだため、対策は立てやすかったものの、バイアスの影響で実際には手遅れになるケースも多いと実感しました。日常の小さな変化に気づき、各パターンを把握する重要性を改めて認識できました。また、プレイ中に別のグループから具体的なアドバイスをいただいたことも、非常に勉強になりました。 バイアスを捉えられる? バイアスをかけず、物事をフラットに捉える癖を身につけるのは容易ではありませんが、今後の課題としたいと思います。例えば、少し元気がない部下がいた場合、過去の経験から業務量に支障はなかったと判断しがちで、問題に気づかないことがあると感じています。また、所属していた部署ごとに常識が異なることを見逃しやすい点も課題です。仕事を依頼する際に、事前に細かい指示を控えがちですが、共通認識を持つための確認時間をしっかりと設けるよう努めたいと思います。

データ・アナリティクス入門

複数仮説で説得力アップの秘密

仮説検証の重要性は? ビジネスにおいて、仮説を立て検証することの重要性を実感しました。今回の学びでは、ひとつの仮説だけでなく、複数の仮説を立案し、その中から最も有効なものを選ぶプロセスが、偏りのない分析につながることを理解できました。また、3C分析や4P分析の演習を通して、具体的な仮説の立て方を練習する良い機会となりました。 経験の反応をどう見る? これまでにも仮説を提示した経験はありましたが、過去の経験では「それはあくまであなたの考えに過ぎない」という反応を受けたため、仮説自体の有効性に疑問を持っていました。これは、プレゼン相手の反応や自身の検証不足が原因と考えています。今後は、仮説を立てた後の検証作業にも、より一層力を入れて取り組んでいきたいと思います。 3C分析の効果は? さらに、実務において3C分析を用いた経験から、このフレームワークが多くの人を説得するために非常に効果的であると感じています。近い将来も、売上情報の分析にフレームワークを活用し、より多くの方に迅速に納得いただける方法を模索していきたいと考えています。

クリティカルシンキング入門

小さな問いが大きく変える会議

問いとは何だろう? 今週は「問い・イシュー」を学び、これまで学んだことの総合演習を実施しました。イシューとは、今ここで答えを出すべき問いであり、長期的な課題解決のためには用いません。また、イシューを設定しないと論点がずれやすくなるため、常に意識し一貫して押さえ続けることが大切だと実感しました。 会議は何を促す? 会議では「今日のゴール」を設定し、議事録の一番上に書いて全員で共有しました。その結果、イシューや目的が何であったかを改めて意識でき、各参加者のイシューがずれることなく進められたと感じました。今後もこの方法を継続していきたいと思います。 メモはどう活かす? また、会議の議事録だけでなく、誰かに見せるためではなく自分用のメモにもこの考え方を応用したいと考えています。過去には、目的と手段が入れ替わっていると言われることがありましたが、イシューを明確に設定していなかったため、そうした指摘にピンとこなかった経験があります。今後はまず問いを立て、何がイシューなのかを念頭に置いた一貫性のある思考を心がけたいです。

クリティカルシンキング入門

課題解決力を高める思考術講座

思考の偏りをどう克服する? ビジネスシーンで自分の考えが通らないと感じることがありますが、これは自身の思考の癖による偏りが原因となっていることが多いです。しかし、この偏りは訓練によって後天的に改善できるものであり、カバーも可能です。単に本を読んでアウトプットするだけではなく、他者との議論を通じて初めて身につくものだと感じます。 クライアントへのアプローチ法は? クライアントが抱える悩みにはしっかりとした課題解決策を提示し、そのアイデアを採用してもらいたいと考えています。また、セミナーの内容が本当にクライアントの課題解決に役立っているのかを確認し、クライアントに提供する時にはできるだけ購入してもらえるようなアプローチを模索しています。 解決策をどう構築する? クライアントの課題とその解決策を多角的かつ網羅的に捉えることで、より納得のいく解決策の導入を推進したいです。これを実現するために、自分の過去の経験だけに頼らず、ロジックツリーなどを活用して解決策をリストアップし、根本から見直すことが必要だと考えています。

リーダーシップ・キャリアビジョン入門

ロールプレイで気付いた成長の鍵

評価面談での反省点は? これまでは、知識や実践において自分は十分に頑張ってきたつもりでした。しかし、評価面談のロールプレイで課長役としてフィードバックを行う際、どうすればよいのかという視点が欠けていたことや、過去の苦い経験に近い状況が影響し、知っていることと瞬発的に行動に移すことの難しさを痛感しました。 リーダー像はどう映る? 自分がどのようなリーダーでありたいかという面は、タスクを進めるうえではある程度固まっているものの、メンバーがリーダーに対してどのような印象を持っているのか、またメンバーの社会的欲求とどう向き合うべきかについては、十分に意識していなかったと実感しています。今回のワークやロールプレイから得た気づきをもとに、チーム内でより良い関係構築に努めていきたいと考えています。 改善点は何だろう? さらに、別の役割から見た課長の視点や、今回のケースに至る過程でどの部分を改善すべきかについて、具体的にディスカッションを重ねることで、より効果的なリーダーシップのあり方を検討していきたいと思います。
AIコーチング導線バナー

「過去 × 経験」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right