デザイン思考入門

観察と共感でひらく新発見

調査ログの見直しは? 今週、育児期間中の30~40代を対象に実施した過去のインタビュー調査ログを見直す作業を行いました。コーディングを意識しながら作業する中で、改めて一次データの重要性を実感しました。 抽出視点の違いは? ログから課題やニーズにつながる事象や行動を抽出する作業は、人の目に依存するため、抽出の視点が人によって異なりやすいと感じました。動画内でも経験が強調されていましたが、バイアスが働くと必要な情報に気付かなくなる可能性があるため、情報を絞りすぎると大切な観点を見落としてしまいそうだと危惧しました。 共感の重要性は? デザイン思考の最初のステップである「共感」では、ユーザーの見えない課題やニーズを発見するために、観察、体験、インタビューを繰り返すことが重要です。インタビューでは、観察で気になった行動の背景を心理面から深掘りし、共感を得られるように課題やニーズを言語化します。こうして得た情報をテキスト化し、コーディング分析を行うことで、単なる観察だけでは浮かび上がらない本質的な課題や行動を明らかにすることができます。 行動の理由を探る? 実際、観察や体験で注目した行動をインタビューで詳しく聞くことで、ユーザーが無意識に行っている当たり前の行動の理由を解明するプロセスの重要性を実感しました。課題を抽出する際は、互いの思い込みや認識の差が生じやすいため、情報共有を通じて共通認識を合わせることが求められます。しかし、立場や利害関係が異なる中で何を重視すべきかを調整するのは容易ではなく、うまく進む場合とそうでない場合があると感じました。 定性調査の有用性は? WEEK-3で学んだ定性調査は、新しい領域や馴染みのない状況で仮説を構築する際に有効な手法だと感じています。定量データだけでは掴めないユーザーの姿勢や心理を探るのに、インタビュー、フィールドリサーチ、ログ(日記)などの手法が効果的です。実際、観察を通じてユーザーが意識していない行動や癖から気付かないニーズや課題にアプローチできることもあります。 仮説構築の進め方は? 定性調査では、まずインタビューやフィールド調査で得た情報を整理し、要点となる事象や課題を抽出します。その後、抽出した要素をカテゴリー分けして情報を圧縮し、最小限の要素にまとめた上で、フレームワークやプロセスの形に図式化・構造化することで仮説モデルを作成します。 ヒアリングの工夫ポイントは? また、インタビューの際にヒアリング項目を整理したシートを事前に作成し、記入してもらってから話を聞く方法も有効だと感じました。ただし、記入式では重要な点が十分に言語化されない場合があるため、まずは日常の業務や業務フローなど現状を把握することから始める工夫が必要です。ヒアリングが雑談になり、課題に焦点が定まらなくなる場合は、ジョブ理論を参考にするのも一案です。実際、グループワークでフォームの改善に取り組んだ参加者の話では、ユーザーが入力の手間を感じないようにするため、従来の枠にとらわれない解決策が模索され、その柔軟な発想が印象的でした。

デザイン思考入門

共感が生む実践×革新の学び

どうすれば現場で実践? デザイン思考の学びを教育現場、特に高専で実践する方法として、まずは学生が抱える問題への理解と新しいアイデアの創出が挙げられます。たとえば、数学の応用問題に取り組む際、学生が理論と実践を結びつけることに苦戦する現状を背景に、教員自身が同じ立場で問題に取り組み、どこでつまずくかを体験的に把握する方法が有効です。また、抽象的な数式を物理モデルに置き換えたり、数学と専門科目を組み合わせたプロジェクトを設計したり、ゲーム要素を取り入れるなど、SCAMPER法といった手法を活用することで、より具体的な学びに結びつけられています。 学科横断型で協働は可能? さらに、学科横断型のプロジェクト設計も大変興味深いアプローチです。電気、情報、機械といった異なる分野の知見が融合するプロジェクトは、学生同士の協働を促進し、実社会の課題に対する解決策を見出すための実践的な学習環境を整えます。こうしたプロジェクトでは、地域企業や地域社会との連携を通じ、学生は自らの専門分野だけでなく、他分野の知識や技術にも触れる機会が増え、相乗効果が大いに発揮されます。 教材連携をどう活かす? また、教材開発の現場では、地元企業が直面する実際の課題をケーススタディとして教材化する取り組みや、研究機関と連携して最新技術を取り入れることで、学生がより実践的な学びを得られる工夫が施されています。こうした連携作業は、学生にとって技術や理論だけでなく、その背景にある現実の問題意識を養う上で、大きな意義を持ちます。 共感で何が見える? 実践の中で感じた主な気づきとしては、まず共感的なアプローチの重要性が挙げられます。学生と同じ目線で問題に取り組むことにより、従来の教科書では見えてこなかった本質的な困難を明確にすることができました。また、SCAMPERなど多角的な思考フレームワークを活用することで、従来の講義形式では思いつかない新たな教授法が生まれ、特に抽象的な概念を具体的な事例に置き換えるアプローチは、学生の理解度向上に大きく寄与しました。 連携が生む視点は? さらに、異分野連携によるプロジェクト活動が、学生の専門性と協働スキルの両方を向上させるとともに、企業や地域との連携により双方に新しい視点がもたらされることも大きな成果です。加えて、大規模な改革よりも、学生からのフィードバックを積極的に取り入れるなど、小さな改善を積み重ねることで、持続可能な学びの環境を創出できるという実感も得られました。 学びの成果は何? 今回の学びを整理すると、まずはデザイン思考における共感と課題定義の重要性が再確認され、実際の体験を通じて「誰が・どのような状況で・何に困っているのか」を具体化する効果が実感されました。次に、創造的な発想のための多様なアプローチ、異分野連携による新しい解決策の模索、そして教育現場への応用可能性が明らかになりました。最後に、実践を通じて体験することの重要性や、使い手の視点が生む創造的解決策、そして異なる視点の融合によるイノベーションの価値を深く理解するに至りました。

戦略思考入門

差別化戦略で優位性を築く方法を学ぶ

「差別化」って何? 「差別化」とは何か、そしてそのポイントについて、体系的に学び理解することができました。 差別化の条件は? 差別化とは、戦略の手法として、自社、競合、市場(顧客)を正確に把握し、分析した上で「目的」や「目標」に向けて自社が顧客ニーズを勝ち取り、優位性を保つことを指します。この際、「実現可能性」のある手法であること、「持続的な内容」であること、そして「模倣難易度」が高いことが求められます。 基本戦略はどう? 基本戦略を決めるには、ポーターの3つの基本戦略を踏まえた経営環境分析が重要です。それにより、自社が取るべき戦略の方向性を確認し、また競合の戦略も確認します。具体的には、コスト・リーダーシップ戦略、差別化戦略、集中戦略(ニッチ戦略)の3つです。これらを同時に達成することができれば、圧倒的な優位性を築けます。ただし、現実は複雑であり、何を見極めるべきかが見えにくくなることも多々あります。したがって、学びと実践を通じて、その視点を磨きたいと感じています。 顧客視点はどう? 差別化を行うには、まず「顧客」を明確にし「顧客の視点」から考えることが重要です。しかし、経営環境を正確に把握・分析しないと、ターゲットを間違え、結果として戦略も誤る可能性があります。今回の受講では、さまざまなフレームワークを活用しました。また、施策には「実現可能性」、「持続的な差別化」、「模倣の難易度」といった要素が求められ、例えばVRIOを用いて確認することが有効です。 実践の工夫は? 差別化の実践に向けたポイントとしては、ありきたりのアイディアに飛びつかないことが挙げられます。他にも、しつこく考えることや、他業界の差別化を学ぶこと、多人数で議論を行いアイディアの幅を広げること、自社の強みを意識し必要に応じて外部の力も借りることが重要です。 実務の見直しは? 普段の実務を振り返ると、差別化に向けてまだ取り組める余地があると感じます。特にありきたりなアイディアに依存せず、議論を深めることで実践が初めて意味を成すと実感しています。 営業戦略はどう? 差別化は営業部門での店舗運営や営業戦略を策定する際に活用できるイメージが湧きました。現状は間接部署に勤務していますが、過去の経験を活かし、店舗運営や営業戦略での利用が可能だと考えています。 経営戦略の確認は? また、自社や自部署の経営戦略を確認・理解する際にも差別化の手法が役立つと感じました。過去から現在、そして未来にかけての戦略を論理的に理解することで、自部署の方向性や次の一手を考える基盤を築けると思います。現状は営業部門ではありませんが、この部分での活用に向けた行動を進めています。 強みを活かすには? 自部署の強みを活かした差別化を検討するために、VRIOでの分析を行い、営業にとって差別化につながる提案を行っていきたいと考えています。そして、自部署の存在や発展が全社の差別化に繋がることを論理的に説明できるように努めていきます。

データ・アナリティクス入門

数字が紡ぐ学びの物語

データ活用はどう考える? WEEK3では、データを単なる数字としてではなく、「意味のある情報」として活用するための基本的な考え方や手法について学びました。まず、データ分析の際には、数字に集約して捉える、目で見て確認する、数式で関係性を読み取るという三つの視点が重要だと理解しました。たとえば、数値の代表値である平均値を用い、分布のばらつきを標準偏差で把握することで、全体の傾向をより具体的に捉えることが可能になります。標準偏差が大きい場合はデータのばらつきが大きく、逆に小さい場合は値が一定の範囲にまとまっていると判断できます。これによって、単なる「平均気温」といった情報でも、過去のデータと比較することで、その年の気温の位置付けを明確にすることができます。 ビジュアル化は有効? さらに、ヒストグラムなどを用いたビジュアル化は、視覚的にデータの分布や外れ値を確認できるため、特定の年齢層の傾向や想定とのずれを一目で把握可能にします。こうしたプロセスは、単にデータを集約するだけでなく、見込み客の把握や最適な施策構築といった、戦略的な意思決定を支える重要なツールとなると感じました。 受講者像の把握は? この考え方を、受講者促進活動に当てはめると、まずは代表値や分布を用いて受講者の像を明確にし、年齢や職業、居住地域、受講目的などの項目ごとに「どの層に集中しているか」や「どの程度幅広い対象にリーチしているのか」を分析する必要があります。たとえば、平均値から中心となる層を把握し、標準偏差で広がりを捉えることで「特定の年代に偏っているのか」「幅広い年代に支持があるのか」が明らかになります。 グラフで見える傾向は? また、ヒストグラムを活用することで、受講目的やニーズの傾向を視覚的に判断でき、たとえば広告文面の最適化や広報素材のデザイン、ターゲット層の絞り込みに役立ちます。同様に、地域ごとのデータもマッピングして、申込数や反応率の地域差を明確にし、重点的な営業エリアの選定につなげることができます。さらに、各施策の反応率を数値化し、平均値と標準偏差を基に比較することで、PDCAサイクルを効率的に回し、より効果的な改善策が講じられると感じました。 具体策はどう実行? 具体的なアクションプランとしては、まず過去数年間の受講者リストから「年齢」「性別」「職業」「居住地」「受講目的」などをExcelに整理し、各項目の平均値や最頻値、標準偏差を算出してデータの集約と構造化を図ります。次に、ヒストグラムや円グラフを用いて年齢や職業、地域ごとの分布を可視化し、そこから抜け落ちているターゲット層や成功しているエリアを確認します。そして、特定のターゲット層を仮説として立て、その層に合わせた広報や導線の設計を行います。加えて、各施策の反応率を記録し、基準となる数値を通じて比較分析を行い、最後に数値とビジュアル化されたデータをもとに定期的な振り返りを実施することで、感覚ではなく具体的な数字に基づいた意思決定を徹底していくことが求められます。

データ・アナリティクス入門

データ駆動!仮説から実践へ

A/Bテストはなぜ? A/Bテストの考え方が特に印象に残りました。異なる2つの施策を比較して、どちらが効果的かを見極める手法を学ぶことで、広告やプロモーションの改善につなげるアプローチを理解しました。実際、SNSでのプロモーションやデザインの検証など、具体的なマーケティング活動にどう応用できるかを実感しました。 仮説はどう考える? また、「こうではないか?」という仮説を立て、それを確かめるために必要なデータを収集して検証・改善するプロセスを通し、結果一喜一憂せずに仮説→検証→改善というサイクルの重要性を体験しました。日常の課題解決にも応用できる実践的な学びとなりました。 分析の視点は何? さらに、データ分析においては「どこで起きているのか(Where)」「なぜ起きているのか(Why)」「どのように起きているのか(How)」という3つの視点で自分の身の回りのデータを分析する練習が非常に効果的であると感じました。これにより、実際の現場に近い形で分析力を向上させることができました。 知識はどう活かす? そして、講師の「使われない知識はどんどん捨てられていく」という言葉が強く心に残りました。知識は使ってこそ意味があるという考え方から、学んだことを実務や日常に活かす姿勢の大切さを再認識し、今後も積極的にアウトプットしていきたいと感じました。 講座の展開はどう? それに加えて、講師養成講座の受講者促進に対しては、具体的な展開案も印象的でした。まず、仮説に基づき、ターゲット層に合わせたプロモーション戦略を設計することが提案されました。例として、若年層の反応を狙い、「講師」というワードが持つ堅苦しさを和らげ、“キャリアアップ”や“副業”といった切り口から魅力を伝える文言を用意する案が挙げられています。 WEB広告の効果は? さらに、Web広告やSNS投稿を使ったA/Bテストによって、異なるバナー画像や訴求文、ターゲット年齢に対する反応を計測し、効果的な組み合わせを選定する方法も紹介されています。各媒体における反応を、「どこで(Where)」「どんな表現が刺さったか(Why)」「受講に至る導線の状況(How)」という視点で分析する点も具体的でした。 受講者の声は? また、受講者アンケートを活用して、学んだ内容が現場で役立っているかどうかを評価し、講座内容や演習方法の改善につなげるという姿勢は、実践的な学びをより一層深めるものと感じました。 今後の行動は? 最後に、今後の具体的な行動計画として、Phase 1からPhase 5までの段階的な取り組みが示されました。まずはターゲットの再設定と仮説の立案、次にテストコンテンツの作成とA/Bテストの実施、さらにデータ分析と受講者アンケートを通じた改善、講座内容のブラッシュアップ、そして成功事例をもとに次回募集に向けた本格展開へと進める構想です。これらの計画を通じ、受講促進に向けた施策を体系的に実行していく意欲が感じられました。

デザイン思考入門

デザイン思考でCX・EXを劇的向上

デザイン思考の学びとは? 今回の授業を通じて、デザイン思考のステップを学ぶことができ、ワークを通じてその理解を実践的に深めることができました。特に印象的だったのは、「自分の気分を色で表現する」というアプローチです。この手法は非常に斬新であり、言葉では伝えづらい感情や思考を視覚的に捉えられる点が非常に興味深かったです。 CXやEX向上への活用法とは? デザイン思考の考え方は、普段の業務で扱う顧客体験(CX)や従業員体験(EX)の向上に直接活用できると感じました。例えば、ホテル業界のクライアントが抱える「オンライン上の旅行代理店の評価向上」や「レビュー分析の効率化」といった課題には、ただアンケート結果を分析するだけでなく、実際の宿泊客がどのような体験をしているのかをきちんと理解する必要があります。デザイン思考を応用し、宿泊客のペルソナを作成し、彼らの視点から課題を捉えることが重要です。これには、既存のフィードバックに加え、インタビューや観察を通じた定性的な情報を収集し、体験の課題を明確に定義して創造的なソリューションを検討するアプローチが有効です。これにより、より本質的な改善策を提案できる可能性があると考えています。 ペルソナ作成の重要性とは? デザイン思考のフレームに沿ったソリューション提案を試みたいと思います。まず、顧客のペルソナを作成する段階では、クライアントの現状を整理し、ターゲットとなる顧客層である宿泊客や従業員の特徴を明確にします。そして、過去のアンケートデータやレビューを分析し、代表的なペルソナを作成します。このペルソナをクライアントと共有し、実態とのズレがないか確認します。 定性的情報の収集方法は? 次に、定性的な情報を収集する段階では、クライアントに宿泊客や従業員へのインタビューを提案し、必要ならホテル現場を見学して宿泊客の行動やスタッフの対応を観察します。また、オンラインの口コミやレビューを詳しく調べ、テキスト分析を使ってパターンを把握します。 課題の定義と可視化の仕方は? 顧客体験の課題を明確に定義する段階では、収集した定量データと定性データをもとに、顧客の不満や期待値とのギャップを整理します。課題を「宿泊前」「滞在中」「宿泊後」に分けて可視化し、クライアントと共有します。そして、影響度と実現可能性を基に、クライアントが優先して取り組むべき課題を整理します。 創造的な改善策の検討方法は? 最後に、創造的なソリューションを検討する段階では、他業界の成功事例やデザイン思考のフレームワークを活用し、新しい施策を考案します。クライアントとワークショップを実施し、改善策を一緒にブレインストーミングし、小規模なテスト運用を提案して、データをもとに改善を重ねるアプローチを取ります。 これらのプロセスを通じて、デザイン思考の視点を活かしてクライアントにとってより価値のあるソリューションを提供できるようになりたいと考えています。

データ・アナリティクス入門

分解の先に迫る成功のヒント

売上分解のポイントは? ライブ授業で、伝統工芸品の売上低下の原因を分析するワークに参加しました。その際、思いついた要因に飛びついてしまうと誤った結論に至ることを身をもって実感しました。事例を読むと、さまざまな要因が一気に頭に浮かびますが、まずは「売上」をどのように分解し、各要素で問題を明確にすることが大切です。具体的には、問題の本質をWhatの視点で整理し、Whereで該当箇所を特定し、Whyで原因を分析、Howで解決策を立案するというステップを忠実に踏む必要性を感じました。 原因検討の視点は? また、原因を検討する際には、マクロとミクロ両面からの視点が求められることにも気づきました。普段から外部要因にも興味を持ちつつ、自社の業務や販売プロセスを細かく分解して分析することで、フレームワークの精度を向上させる努力が必要だと実感しました。さらに、実数と率の両方を確認するという基本的なポイントが、自身の分析手法において抜け落ちていたことにも気づかされました。 店舗運営の見直しは? 店舗業務においても同様に、業務を分解しボトルネックを解消する手法を取り入れたいと思います。現在の店舗業務は煩雑で無駄が多いと感じていましたが、ある店舗では人員を削減した結果、業務効率が向上し生産性が上がったという事例を経験しました。この経験から、最適な人員配置を再考し、労働分配率を指標として理想的な店舗運営を模索する必要性を認識しました。 工程分析の進め方は? そのためには、まず店舗の業務内容を細かく分解し、どの工程にボトルネックがあるかを洗い出します。具体的には、各作業にかかる時間や担当人数を数値化し、店舗間で比較を行います。比較指標は、優先順位をつけた上で、フレームワークを活用して要因の検証を行います。検証結果から仮説を立て、それを元に対策を立案することが最大の目的です。対策は、すぐに実行できるものと、長期的に計画的に実施すべきものとに分けて検討します。 環境変化への対応は? 法改正や業界環境の変化といった外部要因に柔軟に対応しつつ、業務効率向上に努めることは簡単ではありません。しかし、業務を数値化し経年変化を追うことで、後からさまざまな要因との関連性を振り返り、分析できると考えています。 実行計画の具体策は? 具体的なアクションプランは以下の通りです。   What:労働分配率が高いという問題を認識する。 ① 業務の洗い出しを今期中に行う(Where)。 ② 問題と考えられる業務を数値化する(今期中に実施)。 ③ 比較指標を立て、要因の検証を行う(今期中)。 ④ 店舗間の比較を来期上期に開始する。 ⑤ 結果を集計し、仮説を立てる作業を来期上期に実施する。 ⑥ 対策を立案するのを来期下期に進める(How)。 以上の手順を踏みながら、各ステップを着実に実行していくことが、問題解決への鍵となると感じています。

クリティカルシンキング入門

実践で見つける学びのヒント

データ分解のポイントは? ■データや数字を分解するとは、まず一手間かけて実際に手を動かし、異なる要素を取り入れながら分解・分類することです。案ずるより生むがやすしという言葉どおり、実際に試してみることで気づきが得られます。また、MECEの考え方を取り入れて漏れや重複を防ぎ、粒度を統一することも重要です。さらに、統計的手法そのものは使わなくとも、正の相関・負の相関や偏りといった結果が分解の過程で明らかになると考えられます。 視覚化の工夫は何? ■データの可視化では、仕事に視覚的な刺激を与える工夫が求められます。最適なグラフや色使いを意識すれば、直感的に内容が把握しやすくなります。グラフ作成においては、意図を誘導するのではなく、客観的な視点と根拠に基づいて、見やすさを重視した作り方が大切です。 各指標の活用法は? 自社の業務では、生産性や品質、お客様の満足度アンケートなど、数字で示せる指標が多数存在します。日常的に取得されるデータは社内ルールに従い取り出し・分析されていますが、KPIに基づかないデータはまだ十分に活用されていません。たとえば、音声データは今後、AIによる分類が進み、感情や品質の判断などに役立つ可能性があると感じています。 視覚情報活用の秘訣は? ■視覚情報を活かすため、直感的に判断しやすい図形のバリエーションを増やそうと考えました。普段はワンパターンになりがちだったため、見直す必要があると反省しています。同様に、先に述べた通り、グラフは客観的でわかりやすいものを作ることが重要です。 異なる視点の効果は? ■実際に手を動かす段階では、定型的な並べ方だけでなく、あえて異なる視点からグラフを作成してみることが大切です。失敗や試行錯誤の過程が次の発見につながるとともに、同じ行動様式によるバイアスやパターン化を排除する助けになります。たとえ時間効率を重視しすぎず、KPI項目に重点を置いた原因分析や仮説の構築に取り組む一方で、KPI以外のデータからも意外な傾向が見えてくるかもしれません。 比較で見える新発見は? また、数値やグラフの比較や傾向を通じて、何も見えてこなかった場合でも、その経験を次への一歩として前向きに受け止めることが大切です。多くのお手本を参考にしながら、状況に応じて複数のグラフバリエーションを試作し、今まで活用できなかった手法を検証する機会を持つことが求められます。 数字伝達の秘訣は? 最後に、数字による主張を客観的に伝えるためには、自分が立てた仮説や意見を偏らず筋道立てて説明する工夫が不可欠です。どれだけ簡潔な説明ができるかを追求しつつ、数字やグラフからどのように伝えるか、どんな言葉を用いるかを直感と経験で磨いていくことが、最終的な課題解決につながると考えます。振り返りや反復練習を通じて、基本を定着させ、一過性では終わらない実践を続けていきたいと思います。

デザイン思考入門

デザイン思考で拓く未来のチャンス

デザイン思考の本質とは? デザイン思考とは、単なるアイデア発想の手法にとどまらないものです。「共感」「試行」「発散と収束」を繰り返し、創造的でより良い解決策を見つけるための思考プロセスと理解しました。講義だけでなく、他の受講者との意見交換を通じて特に印象に残った学びや気づきを以下に挙げます。 共感が解決の鍵? まず、共感の重要性です。問題解決の出発点は、ユーザーの立場で深く理解することにあります。本当の課題を考えるためには、観察やインタビューを通じ、その場に顕在化していないニーズを探ることが求められます。 スピード感を持つ試作の重要性 次に、プロトタイピングとフィードバックのスピード感が大切です。素早く試作してフィードバックを受け取りながら改善するアプローチは効果的です。完成形を目指すのではなく、デザイン思考の各フェーズを行きつ戻りつしながら試して学ぶことで、より良い解決策が見えてきます。 発散と収束のバランスは? さらに、発散と収束のバランスも重要です。考えられる選択肢を広げる発散と、最適な解決策を絞る収束を交互に繰り返すことで、創造的な解決策を得ることができます。既存の枠にとらわれず、多様な視点を取り入れることが新しいアイデアを生む鍵となります。 デザイン思考の具体的な応用は? デザイン思考は、特に事業開発や組織開発のコンサルティング業務で応用できると考えました。新規事業開発を支援する際には、顧客ニーズを正確に捉え、適切なプロダクトやサービスを設計する必要があります。ユーザーインタビューや観察を通じて潜在ニーズを引き出し、アイデアのプロトタイピングを迅速に行うことで、事業の方向性が明確になります。 また、組織改革・組織開発を支援する際には、多様な視点から課題を分析することが必要です。エンゲージメント向上策を考える時に、現場の意見を集めながらプロトタイピングを進めることで、実効性の高い施策につながるでしょう。 クライアントへの効果的なアプローチ方法は? クライアントとのワークショップ設計やファシリテーションにも役立ちます。問題を整理し、解決策を共創する際に、発散と収束のバランスを意識すると、より効果的な議論ができます。アイデア創出の段階では多様な視点を採り入れ、その後、アイデアを整理して実行可能なアクションに落とし込むことが有効です。 これを踏まえ、以下のような行動を試してみたいと考えます。まず、クライアントの課題を整理する場面では、共感フェーズを意識し、「なぜ?」を繰り返し問い、本質的な課題を探ります。次に、ワークショップやミーティングをデザイン思考に沿って進め、新規事業のアイデア出しでは発散し、その後収束するという流れを意識します。最後に、プロトタイピングを有効に用い、提案前にシステムモデルを通じて思考を構造化し、フィードバックを得るなどして、提案をより洗練させます。

データ・アナリティクス入門

仮説が生む実践データの魔法

分析の基本は? 分析は比較と捉え、どのようなデータを使い、どのように加工し、何を明らかにするかを明確にすることが大切です。さらに、データ分析に入る前には、目的や仮説をしっかり定める必要があります。基礎として、データの種類、統計手法、可視化などの基本概念を学び、ビジネスにおける意思決定や課題発見のためのデータ活用について理解を深めることが求められます。また、実践的な分析手法やケーススタディを通じ、具体的な応用方法を身につけることも重要です。 学びの全体像は? 全体的に、学習の振り返りは非常に明確で体系的でした。データ分析の基本から実践まで幅広く理解されている点は印象的で、今後は具体的な状況での活用例を考えることで、さらに効果的な応用ができると感じます。 活用のヒントは? さらに思考を深めるため、ご自身の業務や日常生活において、今回学んだデータ分析の知識をどのように活用できるか、具体的な場面を想定してみてください。また、データ分析における仮説の立て方について、どのように仮説を形成すると効果的か、具体的に検討してみることをお勧めします。 適用場面って何? 最後に、データを活用する場面を具体的にイメージし、その適用方法を探求してみてください。今後のさらなる飛躍に向けて、引き続き努力を重ねてください。 仮説検証の流れは? たとえば、仮説思考を鍛えるために、ビジネス課題に対して「仮説➣検証➣改善策」というフレームワークを活用することで、原因分析や改善策の構築がスムーズに進むでしょう。また、過去のデータと比較しながらKPIの設定や顧客データの活用を検討し、現在の状況の妥当性を検証することも大切です。 スキル向上は? 今後強化したいスキルとしては、まず論理的思考力を向上させるため、データリテラシーを高め、データの種類や特性を理解して適切な活用方法を判断することが挙げられます。さらに、批判的思考力を養い、データの信頼性やバイアスを見極めながら、より効果的な意思決定を目指してください。また、仮説思考を活用してビジネス課題に対する仮説を立て、実際のデータ分析で検証する実践力も重要です。 フレーム活用は? ビジネス・フレームワークの理解も不可欠です。データをもとに最適なKPIを設計し、事業の進捗を正確に測定・評価すること、そして構造的なフレームワークを実践することで、より整理された分析が可能になります。市場や競合、自社の状況を把握するため、さまざまな分析手法を積極的に活用していきましょう。 伝え方はどう? また、ヒューマンスキルの向上も重要です。データストーリーテリングによって、分析結果をメンバーにわかりやすく伝え、意思決定に繋げる技術を磨くとともに、組織全体でデータに基づいた意思決定ができる文化の醸成に努めることが求められます。

リーダーシップ・キャリアビジョン入門

気づきと挑戦のリーダー日記

リーダーシップの変化は? リーダーシップのスタイルは、かつては命令者がすべてを管理する方式が主流でした。しかし、今日の変化の激しい環境においては、すべてを一人で管理することは難しく、現場に一部の権限を委譲するエンパワメントが求められるようになりました。権限を委譲する側は、育成の観点を忘れず、目標の明示と必要な支援を行うことが大切です。一方で、高度な政治力が必要な業務や不確実性が高く、失敗が許されない仕事には、この手法は適さない場合もあると感じます。 目標設定の疑問は? リーダーシップにおいては、「わかる」と「できる」が異なることを認識しなければなりません。目標を設定する際、成功の基準が定まっていなかったり、その意義に納得できていなかったりすると、適切な成果を上げることが難しくなります。業務を委譲する際は、自身に余裕があることと、相手の能力や状況を十分に理解していることが前提です。さらに、目標設定の際は、意識、具体性、定量性、挑戦の観点から整理し、6W1Hを踏まえた細部まで明確な依頼をすることが必要です。本人が目標設定に参加することで、モチベーションも高めることができるでしょう。 伝わる声かけは? また、依頼する際には相手が本当に取り組みたいと思えるような声掛けが求められます。相手ができないのか、わからないのか、またはやりたくないのかを見極め、適切なサポートや対話を通じて、認識のずれをなくす努力が重要です。業務の説明だけでなく、相手が内容を正しく理解しているか確認するプロセスを設けることで、自主性を尊重しつつ、進捗状況を把握できる体制を作ることが期待されます。 委譲の落とし穴は? 社内ではエンパワメントによる目標設定が義務化されているものの、業務全般に無理に権限を委譲しようとするケースも見受けられます。現場に任せる範囲と、重要な決定については上長が連絡・相談するという報告ラインを整備する必要があります。日々の業務判断において、現場リーダーに委譲することで一部問題が発生した事例もあり、全体の管理が過度になるとマイクロマネジメントにつながる危険性があると感じています。管理職は、日常の後処理に膨大な時間を費やすのではなく、先導すべき課題に注力できる仕組みづくりが求められています。 連携の壁は何? さらに、社内横断プロジェクトや複数の関係者が集まる組織では、明確なゴール設定や教育的なサポートが難しくなるため、業務の割り振りが一層複雑になります。これまで、多くの場合、一人の幹事に大きな負担がかかってしまうか、または分担しても後に大幅な修正が入るという状況がありました。限られた時間と労力の中で、各々の経験や知見を活かし、より完成度の高い業務を実現するためには、どのような働きかけが適切か、さまざまな意見を交換していく必要があると考えています。

データ・アナリティクス入門

仮説で切り拓く思考と成長の道

仮説はどう捉える? 仮説は論点に対する仮の答えであり、そこから検証や分析を進める出発点といえます。仮説には「結論の仮説」と「問題解決の仮説」という2種類があり、前者は最終的な結論の方向性を先に立て、そこから逆算して必要な情報を集めて検証を進めるものです。一方、後者は起きている問題に対して「なぜそうなっているのか」「どうすれば改善できるか」を探るプロセスであり、What、Where、Why、Howといった問題解決の手法を意識して仮説を立てます。 仮説はどう整理? これまでは仮説を一括りで捉えていましたが、今後はどちらのタイプの仮説に取り組んでいるのかを明確に意識して使い分けたいと感じています。また、複数の仮説を立てることで決め打ちを避け、柔軟な視点を保つことができます。加えて、仮説同士の網羅性を意識し、カテゴリやプロセスといった異なる切り口からの検討は、より構造的なアプローチにつながります。こうした取り組みが、課題設定力の向上にも寄与すると考えています。 どんな経験が役立つ? これまでの業務経験では、「結論の仮説」と「問題解決の仮説」の両方に取り組む機会がありました。特に施策の立案など、結論を先に想定する場面ではフレームや構造を活用し、全体像を俯瞰したうえで結論から逆算して仮説を立てることが効果的だと感じています。一方、日々の業務でデータを確認し、問題を発見・提示する機会が増える中、What/Where/Why/Howのプロセスを意識した仮説立案が、原因特定から改善策の検討までの一連の流れを円滑に進める助けとなっています。 仮説の質はどう上がる? また、仮説の質を高めるためには、網羅性を意識しながらさまざまな切り口で検討する姿勢が重要です。この取り組みを通じて、本質的な課題設定ができ、より実効性のある打ち手へとつなげることができると実感しています。 学習の効果は何? 今回の学習を通して、「結論の仮説」と「問題解決の仮説」という2種類の仮説が存在することを再認識しました。振り返ると、私は「こうすればうまくいく」という結論の仮説に対してやや苦手意識を持っていたと気づきました。 今後の改善はどう? そこで今後は、まずフレームワークを活用して構造的に考えることに努めます。要素分解を通じて仮説を立てやすくし、思考に型を取り入れることで苦手な結論型の仮説も導き出しやすくする狙いです。また、間違ってもよいという前提で自分なりの仮説を積極的に立てることで、完璧を求めず「とりあえずの仮置き」を実践し、言い切る練習を重ねつつ検証を前提とした思考に慣れていきます。さらに、学んだ知識をそのまま受け入れるのではなく、自身の業務や経験に照らして問い直し、アウトプットや振り返りを通じて知識を深め、実際に使える形に育てる努力を続ける所存です。

「本 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right