データ・アナリティクス入門

現場で磨く仮説思考の実践

具体的演習の魅力は? 総合演習の課題解決は非常に具体的で、これまでの演習と比べると、より深い検討が求められる良い機会となりました。 フレームワーク使用法は? 仮説を考えるプロセスでは、思考の幅を広げるためにフレームワークの活用や対概念の取り入れ方が提示されました。しかし、現時点ではフレームワークの使いこなしが十分ではないと感じ、今後の日々の活動の中で意識的に取り入れていきたいと思います。 A/Bテストの効果は? また、A/Bテストを活用して早期にアクションを起こすことで、得られたデータをもとに仮説をさらに精緻化する取り組みも印象的でした。Web関連の利用場面では活用しやすい一方、現業務にすぐ生かすことは難しいと感じたため、二つの選択肢の中から比較しながら適した選択を見つけるアプローチを取り入れたいです。 問題解決の流れは? 問題解決については、問題に至るまでの流れをプロセスに分解し、どの段階に原因があるのかを明らかにする手法が有効だと実感しました。解決策を検討する際にも、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性が伝わってきました。 現場実行のコツは? 現在の業務では、大規模なデータ分析による示唆を提示するよりも、現場に近いところですぐに施策を実行することが求められていますが、仮説思考に基づいて複数の仮説を立てた上で行動に移すプロセスを意識的に実践していきたいと考えています。

戦略思考入門

戦略思考で拓く新たな自分

目標と現状の接点は何? 戦略的思考とは、まず目標と現状の地点を明確に設定し、その間を最短距離で結んでいくことだと学びました。普段、プロジェクトを進める際にはクライアントからの要望に応じて、発生するタスクをいくつか洗い出し、その中でも特に時間と関係者が必要な作業をクリティカルパスとして最優先に取り組むようにしています。 実行と省略の理由は? また、戦略とは何を実行するかを選ぶだけでなく、何を実行しないかを決定することでもあると感じました。クライアントのリクエストを中心に作業を進め、要望がない部分は最低限のアウトプットを目標にする方法は、事業戦略の現場でも重要な考え方だと思います。不要な検討事項をなぜ省くのかを論理的に整理し、説明できることも求められる点に納得しています。 日常への戦略的活用はどう? さらに、日常の様々な場面でも戦略的思考は活用されています。現在、転職活動中という身で、必要な資格取得やスキルの習得に向けて戦略的なアプローチを実践していると感じます。また、面接に備えてこれまでの業務経験や実績、強みを論理的に整理し、わかりやすく説明できるよう努めています。 整理された思考はどう生かす? これまで無意識に行っていた思考を俯瞰し、論理ツリーなどの手法を取り入れて整理することで、今後の業務においてより幅広く深い視点を持つ戦略的な考え方を身につけられるよう、本受講を進めていきたいと考えています。

データ・アナリティクス入門

小さな挑戦が未来を創る

問題の原因は何? 問題を特定する際には、まずプロセスごとに整理して考え、複数の案に対して各々の確度を点数化して比較検討する手法が有効だと学びました。また、仮説検証のために小さいサイクルを繰り返すことで、実際の運用の中で迅速に改善策を試すことができると感じています。過去に広告のABテストを実施した経験から、構造を改めて理解することもできました。 チーム士気は上がる? 実務者はこのような小さいサイクルの繰り返しによる検証の重要性を十分に理解している印象ですが、一方で意思決定者はサイクルの大きさに注目しがちだと感じました。今回の学びを社内で明確に説明することができれば、チーム全体の士気向上にもつながるのではないかと考えています。 売上の謎を解く? たとえば、自社ECサイトのアクセス解析において、「特定商品の売上が伸び悩んでいる一方で、検索数は増加している」という状況が見受けられた際は、売上の構成要素や購入プロセスを分解して整理しました。その上で構築した仮説をすぐに検証し、実践することで問題解決に取り組んでいます。 効果はどう確認? また、繁忙期前にECサイトでセールを実施する際、消費行動を促すフレーズの効果を明確にするため、あらかじめ広告のABテストを行いました。テストの結果をもとに効果の高いフレーズを特定し、繁忙期のセールページに反映させることで、より成果を上げる工夫をしています。

クリティカルシンキング入門

フラットな視点が拓く未来

データの説得力は? データに基づいて論理的に導き出された方策には、数ある手法の中でも特に説得力があり、実践する際に効果が期待できると感じました。 本質はどこにある? チームで分析を進める際、議論が拡散して本来の問いを見失わないよう、得られた事実に対して丁寧に目を向けることが重要だと実感しました。実際の業務では、頭の中にある既定の原因や方策にとらわれず、フラットな姿勢でデータと向き合う意識を持つ必要があると感じています。 仮説の進め方は? また、全ての要素を網羅的に分析し、一つひとつ順番に確認する方法は非効率であるため、仮説を立てた上で優先順位を意識しながら進める手法の重要性を改めて認識しました。 満足度の裏側は? 年に一度、事務局を務める競技会の満足度アンケートを通じ、数値では明確に分解できないフリーコメントを整理・分類することで、参加者の満足や不満を体系的に把握することに努めています。その結果からイシューを特定し、真の原因へアプローチする方策を検討する意識が養われました。 チーム視点は整う? さらに、日常業務においても、チームメンバーとイシューに対する視点を合わせ、要素を丁寧に分解することが大切だと考えています。問いかけを通してメンバーの意見を引き出し、原因や方策を決めつけることなく、常にフラットな視点で課題に向き合う姿勢を心がけたいと思います。

クリティカルシンキング入門

ナノ単科で見つけた学びの一歩

問題本質は何? 思考にはそれぞれクセや偏りがあるという前提のもと、問いと答えを繰り返すことで正しく課題を抽出する手法が有効です。こうしたサイクルを意識することで、問題の本質に迫ることができます。 共有はどう役立つ? また、仕事においては、自ら問いを残しその問いを共有することが重要です。これにより、より説得力のある意思決定へとつながり、組織全体で課題に向き合う姿勢が生まれます。 論理を磨くには? さらに、クリティカルシンキングを向上させるためには、頭の使い方を理解すること、他者と積極的にディスカッションすること、そして反復トレーニングを行うことの3つの要素が欠かせません。これらを意識することで、思考の精度を高めることができます。 根拠に迫る判断は? 担当のタスクや課題に取り組む際は、答えを決めつけるのではなく、正しい問いとそれに対する根拠に基づいた答えを導き出し、自分の意見を明確にすることが求められます。また、チーム内では課題管理表や進捗管理表を活用し、検討事項を漏れなく記録することで、いつでも説明できるような体制を整えることも大切です。 考えを伝える力は? 最後に、頭の中で何となく考えるのではなく、自分の思考を日本語の文章として言語化し、共有しながらディスカッションを重ね、その解像度を上げてブラッシュアップすることが、課題やタスクを前に進めるための鍵となります。

データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。

データ・アナリティクス入門

データ分析力で未来を切り拓く

比較で何を探る? 「分析とは比較なり」という言葉が示すように、分析を行う際には、条件を整えて比較し仮説を立てることが重要です。この手法は、日常的にデータを扱う作業の中で非常に役立っています。例えば、全国推奨品になった製品のシェアが推奨される前後でどの程度伸びているのか、値下げ要求に応じた場合に売上がコストダウンのインパクト以上に増加したかどうかなどの質問です。 目的と条件はどう? 分析を始める前に、分析の目的とデータの条件がしっかりと整っているかを確認します。目的がはっきりしていなければ、分析結果は曖昧になり、有益ではなくなってしまいます。また、「生存者バイアス」という思考に陥らないように、成功体験だけでなく失敗からも学ぶ意識を持ち続けたいと思います。たとえば、競合との製品コンペに勝つためには過去の成功事例から学ぶだけでなく、敗北したケースの反省点を検討し、どこが競合よりも劣っていたのかを追求していくことが重要です。 データの見せ方は? さらに、データの見せ方も大切です。数字やパーセンテージで示すべきか、どのようなグラフを使用するかを考え、視覚的に訴える効果的な方法を選択することが求められます。こうした分析の技法や思考法は、データを扱う日々の作業の中で重要な役割を果たします。ファクトに基づいた正確な分析結果を出し、それを適切に伝えられるように努めていきたいと思います。

マーケティング入門

Z世代の心を掴む新しいマーケティング戦略

ターゲット顧客の真のニーズとは? 今回の総合演習では、ターゲット顧客の不満から真のニーズを把握し、行動パターンに基づいて体験価値を付け加えることで、新しい市場で顧客を勝ち取る方法を学びました。特に、スマートフォンが当たり前となったZ世代が急速にトレンドを変えていることを実感しました。彼らの媒介を見る視点や、枠にとらわれない考え方は、新しい発想の基盤となり、Z世代について深く考える良いきっかけとなりました。 自社商品に付加価値をどう与える? 今回の『顧客が価値を感じる体験を付加価値とする』という考え方は、私たちの自社商品においても非常に重要です。しかし、我々の製品は気軽に手に取れるものではないため、新たなアプローチが必要だと感じました。その一方で、手軽に手に取れないという特性を逆手にとり、数少ない『体験できる場』に重きを置くことで、顧客が「行ってみたい」と感じるようにするのも一つの手法として考えられます。 次なるマーケティング戦略 具体的には以下の点を考えてみました: - 日常の中で触れる、または目に留まる商品にプラスαの価値を持たせる方法を検討する。 - 体験価値とは何か、その体験によってどのような感情が生まれるのかを自ら検証する。 - マーケティングの本を読み、さらに理解を深める。 このようにして、顧客の体験を重視する新しいマーケティング戦略を考えていきたいと思います。

データ・アナリティクス入門

仮説が拓くわたしの挑戦記

仮説の基本は何? 仮説とは、ある論点に対して一時的な答えを示すものであり、結論の仮説や問題解決の仮説など、さまざまな形で用いられます。この仮説を立てることで、検証マインドや関心・問題意識が向上し、行動のスピードや精度も高まるという効用があります。 データで示す理由は? また、仮説はそれ自体の正しさをデータで示す必要があり、その方法が非常に重要となります。データにより正しいことが証明されるとともに、他の説が否定される仕組みが求められます。良い仮説を構築するには、フレームワークの活用も有効であり、フィールドワークやエスノグラフィーといった手法が、質の高い仮説作成に寄与するという意見もあります。 仮説思考はどう役立つ? さらに、仮説思考は課題や目標の検討にも役立ちます。次年度の事業目標や事業拡大のために、自分なりの課題設定を行う際、また顧客ニーズの変化や新市場を捉える際に、仮説を立ててアイデアを具体化することが求められます。 来年度の目標設定はどう? 来年度の目標設定においては、売上などの事業指標だけでなく、競合との比較や自社への影響を示す独自のインデックスを仮説として設定することが推奨されます。その仮説がどのような状態になれば「影響がある」と判断できるのか、ほかの指数と照らし合わせながら検証し、実際にデータを収集して売上や実感との整合性を確かめることが大切だと感じました。

データ・アナリティクス入門

ギャップを明らかにする学びの道しるべ

現状はどう認識? 課題解決のためのデータ分析を行う際は、まず「what」「where」「when」「how」の観点で現状とあるべき姿の違い、すなわちギャップを明確にすることが大切です。特に「what」では、現状と理想との間にどのようなずれがあるかを捉え、その認識を関係者間で事前にすり合わせておくと、混乱なく分析を進めることができます。 手法はどう整理? 次に、ロジックツリーやMECEといった手法を活用することで、要素を段階的に整理し、状況を階層や変数別に切り分けることが可能です。実際の業務においても、初めて触れるデータに関して上長とのギャップ認識のずれから分析をやり直すケースがあったため、事前の共有が重要だと感じています。 結果はどう活かす? また、分析結果をもとに報告書や提言を作成する際は、その場しのぎの発想に頼らず、体系的にロジックツリーを活用して現実的な対策を検討すべきです。社員の意識調査のアンケートなどでは、まず「what」「where」「when」「how」に関する仮説を立て、その上で使用項目の選定とデータ分析に入るプロセスが理想的です。 対策はどのように? さらに、社内教育後の報告書で今後の取り組みを提案する際には、すぐに実行できる対策と時間を要する対策に分類し、複数の段階に分けて具体的な打ち手を検討することで、実現可能な内容を選定することが求められます。

クリティカルシンキング入門

振り返り文で学ぶ問題解決テクニック

物事を分解する利点は? 「物事を分解する」という手法は、複雑な問題や課題を整理し、本質を掴むために非常に有効だと感じました。分解することで得られる利点として、全体像の明確化、真実への気づき、主観や思い込みの排除、具体的なステップの可視化が挙げられます。これにより、行動に移しやすくなり、自信がつき、切り口が増え、無駄が減ることで、コミュニケーションも円滑になります。 IT業界での分解の活用法は? 私はIT業界で働いています。分解を効果的に活用する場面としては、システム障害時のトラブルシューティングがあります。アプリケーションエラーの要因や原因を細分化して判断します。また、要件定義やシステム設計では、顧客の要求を具体的に細分化し、それぞれの機能や動作について詳しく検討・具現化します。プロジェクト管理やコードレビューにおいても、工程やタスクを細分化して効率的に管理し、効果的なレビューを行います。 明確な目標設定の重要性は? 実践においては、明確な目標設定が重要です。例えば、障害対応や要件定義の工程で課題を意識し、発生した問題を分解して整理します。分解された要素の因果関係を確認し、特に障害対応時には優先順位の判断も必要です。また、仮説を立てる姿勢やツールの活用も有効です。こうしたプロセスを定期的に繰り返し、振り返りを行いながら、自分のスキルとして確実に身につけていきたいと思います。

戦略思考入門

実践で紡ぐ信頼と成長戦略

費用対効果はどう? タクシー会社の事例からは、まず広告費用の投資に関して、計画立案時に費用対効果を十分に考慮する必要があると感じました。また、配車アプリの事例では、協力依頼を行う際には、実施目的や期待される成果が相手にしっかり伝わるよう工夫すべきだと学びました。特に、大手企業が採用しているといったバックグラウンドを後付けで付加することで、信頼感を醸成する手法に納得しました。さらに、新たな取り組みには必ずコストが伴うため、既存のノウハウを活かせるビジネス分野への展開や、自社の強みを再分析することの重要性も実感しました。 採用戦略はどう? 一方、自社に関しては、プロダクトを保有していない分、採用や人材育成、そしてターゲットとする顧客や案件の種類に着目し、規模の経済性や範囲の経済性を追求する方向性が必要だと考えています。社内の人材育成、品質向上、業務効率化といった課題に取り組む際、今回の学びを活かして費用対効果のみならず、既存業務や他の取り組みとのシナジーを十分に検討したいと思います。 未来計画はどう? さらに、来年度実施予定の中期経営計画において、ターゲットとする顧客や案件の種類を明確にした上で、どのような人材を採用し、どのように育成するかを計画していく所存です。その際、現状の社員の配置転換や、営業・技術の双方の体制の見直しも含めた戦略が求められると考えています。

「検討 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right