データ・アナリティクス入門

仮説思考で成果を引き出す方法を学んで

仮説思考をどう浸透させる? 今回の学びで、仮説とは何か、その明確な答えと種類について理解を深めることができました。これにより、今後同僚に仮説思考を浸透させる際に非常に役立つ知見を得られました。 データ収集の重要性とは? 特に印象に残ったのは、仮説を検証する際には都合の良いデータだけでなく、そうでないデータも集めることの重要性です。これは当たり前のことですが、自分の仮説を成立させるために都合の良いデータを集めがちであることに気づかされました。また、仮説を用いて社内外のステークホルダーを説得するには、多くの状況証拠を集めて分析することの重要性を再認識しました。 行動を深める仮説活用法 私は仮説をもって行動することの重要性を感じています。失敗しても「なぜ失敗したのか」を検証しやすくなるためです。今週の学習では、仮説を正しく用いることで説得力が増し、行動のスピードと精度も上がるという点に感銘を受けました。この学びを次週以降の学習でさらに深めたいと思っています。 成功体験に頼らないためには? 仮説の重要性やその価値を同僚に伝え、仮説思考を普及させることで、事業部の政策決定や担当者の行動が効率化されることを期待しています。過去の成功体験に依存する傾向がある事業部では、なぜ成功したのか、そして今も通用するのかを検証せずに同じ施策を繰り返しがちです。これは「問題解決の仮説」ができていない証と考えます。仮説思考の重要性を学んだので、これまでの取り組みを再考したいと思っています。 キャンペーン効果の再評価を 具体的には、事業部が定期的に行うキャンペーンやインセンティブについて、その効果を費用面だけでなく当時の外部環境も踏まえて検証しようと思います。これまでは、仲の良い同僚や上司と問題提起を行い理解を得られていましたが、それを全体に普及させることはできていませんでした。次週以降の具体的な方法を適用するための準備として、多様なデータを集めることから始めようと思います。その際、都合の悪いデータも取得することを忘れずに行いたいです。この週の気づきを早速実務に反映していきたいと思います。

クリティカルシンキング入門

成長を実感できる振り返りの重要性

学びの振り返りをどう活かす? これまで学んだ内容を振り返ってみると、まだまだ身についていないことが多いと感じました。また、ライブ授業で他の受講者たちが積極的に発言している姿を見て、自分も講座修了後に学んだことを振り返って、しっかりと実践していこうという意識が強まりました。 問いを意識する重要性とは? 人間は考えやすいことや考えたいことを考えてしまう癖があります。自分の考えをチェックするもう一人の自分を育てることが大切だと、Week1の講義で強く印象に残りました。しかし、まだ経験や思いつきで考えてしまうことが多いと感じています。また最近、部内でのある問題に対する認識がずれていることに気づきました。この経験から、問いの形で問題を特定し、問いを意識し続けること、そして問いを共有することの重要性を改めて感じました。 コミュニケーションをどう改善するか? 長い間同じ会社や部署にいるため、相手も自分と同じ認識を持っているだろうと決めつけて話してしまうことが多いです。これからは省略せず、相手の立場に立って話すよう心掛けたいと思います。また、思いつきや自分の経験から判断してしまうことが多いため、結論を出す前に本当にその結論で良いのかを深堀りすることも意識していきます。 プロセス共有の大切さとは? 部内で検討の機会が多いため、「イシューを問いの形で特定する」、「意識し続ける(途中でずれていないか確認する)」、「検討メンバーで共有する」というプロセスを実施したいです。業務分析をする際には、データをただの数字として見るのではなく、細かく分解して検討するように心掛けます。また、日々のメールやプレゼンはなんとなくで作らず、相手に読んでもらえるように、情報を探させない、明確に意図が伝わるよう意識して作成します。 継続的な学びの習慣をどう築く? まずは、本講座で学んだことを自分の言葉でまとめ、定期的に確認する習慣をつけることから始めたいと思います。学びを自分のものにするためには反復トレーニングが必要で、一時的に業務スピードが落ちるかもしれませんが、あきらめずに実践していきたいと思います。

データ・アナリティクス入門

データの力が導く学びの未来

データ分析はなぜ? 目的達成や問題解決のための有効な手段として、データ分析の重要性を改めて実感しました。適切な分析には、単にデータを眺めるだけでなく、比較を伴うことが必要です。比較する際には、目的から導かれる仮説に基づいてデータ収集と検証を行う方法や、さまざまな視点―インパクト、ギャップ、トレンド、ばらつき、パターン―をもとに状況を把握する方法など、多様な手法があります。グラフや数値、数式などのアプローチによって、得られたデータに説得力を持たせることができます。 情報収集はどうする? また、データ収集には信頼性の高い情報元の活用が欠かせず、単に情報を得るだけでなく、目的に合わせて手を加えることが求められます。実際の現場では、現地調査や見学、アンケートによる意見収集、またはテスト実施など、さまざまな方法を組み合わせることで、多角的に状況を把握し、設問の設計にも特に注意が必要であると感じました。 売上はどう捉える? 業務においては、売れている商品と売れていない商品の把握がまず基本となります。売れている商品の魅力を分析し、その傾向が同じ商品群に見られるのかを比較することで、機会損失を防ぐ狙いがあります。一方、売れていない商品については、取扱いの見直しが必要かどうか、同様にデータを用いて検証することが重要です。 売りたい商品ってどう? さらに、売りたい商品の特徴を明確にするためには、仮説をもって比較対象を選定し、データ分析を実施することが説得力を高めるポイントです。また、食品業界のように実績だけでは見えにくいトレンドも存在するため、ニュースや人々の動向に敏感にアンテナを張りながら、時系列にも留意して傾向を把握する必要があります。 課題解決の本質は何? 仕事の本質は問題解決にあると感じる一方で、ほとんどの業務は何らかのデータに基づいて進められており、その分析が出発点となっています。設問設計には難しさを覚える部分もあるため、より適切かつ効率的な方法について学ぶことができれば、今後の提案や業務改善に大いに役立つと考えています。

データ・アナリティクス入門

繰り返しが生む新たな発見

繰り返しの学びって? 全体を振り返ると、何度も同じ内容について整理し、記述を繰り返すことが学習において非常に重要であると実感しました。このプロセスの意味を学習テーマとは別に考えることで、新たな学びを得る機会となりました。 仮説疑問はどう? コースの初めに、「仮説とは何か」という疑問を持ち、データ分析のアプローチが状況により異なることを知りました。すでにデータが存在する場合と、データが無い場合では、分析に至る過程や組み立て方が大きく異なります。 既存データの活用は? 先にデータが用意されている場合は、目的を明確にした上で、データの特徴を探り、どの要素を比較するか、どのような傾向や動きを把握するかを平均、標準偏差、相関などの分析手法を活用して明らかにしていきます。その結果、見えてきた情報を体系的に整理することが可能となります。 無データの場合は? 一方、データが先に存在しない場合は、まず解決すべき課題や手がかりを見つけ、その観点に沿ったデータを収集します。具体的には、What-Where-When-Howという視点を順に確認し、マーケティングの基本的な枠組みを参考にしながら、適切なデータを取得し、課題を明確化するプロセスを進めます。その際、解決策や成功の可能性も同時に検討していきます。 記述重ねる理由は? また、同じ質問に何度も答え、記述を重ねる過程の意義についても改めて考えさせられました。学んだ内容が蓄積される中で、実際の業務にどのように適用できるかを具体的にブラッシュアップする必要があると感じました。 分析手法の見直しは? Q1では、分析に対する取り組み方を整理することができました。特にデータが既にある場合は、データを加工するための手法と知識が不可欠であることを再認識しました。しかし、今回のコースではその実践的な部分までは触れていなかったため、過去の振り返りと同様の記述となりました。今後は、実際に手を動かしてデータを扱う内容を学ぶ必要があると感じました。

クリティカルシンキング入門

データで発見!POS活用の新視点

グラフ化はどう効果的? 数字をグラフ化することによって、新たな発見が得られることがあります。また、比率の計算を通じて、全体に占める割合を分かりやすく理解できます。これまであまりグラフ化を行ってこなかったので、これからは積極的に取り組んでいきたいと思います。反対に、「データを加工しないままだと、重要な点を見落とす可能性がある」ということも意識して注意を払いたいと思っています。 分解方法をどう見直す? データの分解の仕方についても、自分が考えていたもの以外にさまざまなアプローチがあることに気づかされました。「データの分け方を工夫する」という段では、二つの分け方から「大学生に集中している」という点を見落としていました。無意識のうちに「同じ年数の幅で比較する」という方法に固執していたようです。また、「分解をする際の留意点を知る」では、解釈の仕方の誤りに気がつきました。一度解釈をした後でも、もう一度立ち止まって「本当にそうか?」と再考する必要性を改めて認識しました。 分解の意義は何? 講義を通じて、「分解してみても何も見えてこないことは失敗ではない」「迷ったときはまず分解を試みる」「分けていくことが理解を深めるための手段」であるという、データを分解して解釈する際のポイントを学ぶことができました。 POSデータの活用は? 私が従事している小売業においては、業務で頻繁にPOSデータを扱います。顧客の動向を把握するために非常に有効なので、POSデータを分析するときにはこの学びを実践していきたいです。特に、グラフ化を意識して視覚的に理解することに重点を置いています。 グラフ化の効果は? 具体的には、POSデータを週ごとにExcelで表にして、グラフ化を通じて視覚的に把握します。そこから見えてきた変化をもとに、今後の方向性を決定し、業務に生かしていきます。毎週さまざまな切り口を試し、効果的な加工の方法を探っていく予定です。

クリティカルシンキング入門

切り口で明かす学びの本質

データはどう見切る? データの切り方によって、同じ数字でも見える課題や傾向が大きく変わることを実感しました。目的を明確にして「何を見たいのか」を意識した切り分けを行うことで、漠然と眺めるだけでは気づけなかった本質が浮かび上がり、無駄を省いた的確な分析が可能になると感じています。 MECE活用は有効? また、MECEの考え方を取り入れて整理することで、重複や見落としを防ぎ、全体像を正確に把握できるようになりました。その結果、何が起こっているのか、どこに手を打つべきかを論理的に説明でき、相手にも納得してもらいやすくなると学びました。 支援でどう効果発現? たとえば、新規事業の構想支援では、顧客層、提供価値、チャネル、収益構造などの視点で情報を整理することで、情報の抜けや重複を防ぎ、相手の納得感を得て意思決定をスムーズにする効果を実感しました。 組織開発の整理法は? また、組織開発の現場では、ヒアリングした内容を「構造」「風土」「スキル」「制度」といった切り口で整理することにより、課題の全体像や優先順位が明確になり、具体的な施策立案につながっています。 研修・講演はどう整理? さらに、研修や講演の場面でも、参加者にとって複雑なテーマを目的に沿って段階的に分解して提示することで、理解と納得を引き出す効果がありました。オンラインでのクライアントとの対話やレビューの際にも、現在の視点や抜け漏れ、そして本質を可視化することで、共通理解と納得感のある議論が進められると感じています。 学びを今後どう活かす? 今回学んだ「切り口の工夫」や「MECEの視点」は、事業開発や組織開発の現場で、初期の仮説立てからヒアリング結果の整理まで非常に役立つと実感しています。今後はこれらの手法を意識的に活用し、ツールを組み合わせながら日常業務に継続的に取り入れていきたいと思います。

データ・アナリティクス入門

一歩踏み出す再学習の軌跡

全体像を再確認? これまでの学習内容を振り返る中で、全体像を再確認できたと感じています。毎週の講義では、個々の演習を通じて内容を確認する機会がありましたが、連続性が不足していたため、先週と今週の学習でその点が整理された印象を受けました。また、従来のやり方や考え方にとらわれがちであることを学びの中で指摘され、再度学び直す必要性を実感しました。 特許情報の活用は? 環境分析においては、特許情報と非特許情報を組み合わせた手法のニーズが高まっていることから、今回の学習で得た知識や手法を取り入れていきたいと考えています。特に、分析は比較が前提であることや、「目的」の重要性について、チーム内での認識が揺らがないよう常に確認する点、そして仮説志向で同じパターンに偏りがないか、使用するデータが適切かを検証すること、さらにWhat-Where-When-Howの観点から確認と検証を行うことが必要です。 データ分析の課題は? これまでの業務を振り返ると、部署や立場が異なるチームでデータ分析に基づく活動を進める際、結果を重視した分析や、データから無理に仮説を導いたり、エイヤーで問題設定を行ったりしていたことに気付きました。今後は今回学習した流れをもとに、自らの手でハンドリングできるよう、実践の機会を積み重ねたいと思います。 問題解決の手順は? また、データ分析に限らず「問題解決のSTEP」を意識して業務に取り組むようになりました。分析を進める過程で、常に「目的」の認識に相違がないか確認し、スケールの大きい要求に対しては漠然とした要求を細分化し、より適切なデータ分析とアウトプットが実現できるよう努めたいと考えています。まずは、自分が担当するチームの開発テーマや製品の規模に合わせたデータ分析を実施し、その結果を第三者であるチームに説明することで、考え方や手順の定着を図っていきたいです。

データ・アナリティクス入門

条件を揃えて見える学びの真実

正しい比較はどうする? 「Apple to Apple」という考え方が印象に残っています。同じ条件に揃えて比較しなければ、意味がなく、データを正しく読み解くために非常に重要だと感じました。頭では理解していても、経験やクリティカルシンキングが不足していると、ついつい情報を鵜呑みにしてしまう危険性があります。 企画と集客の関係は? 私は学生向けのオンラインイベントの企画と集客を担当しています。まず、企画と集客は表裏一体であり、学生の行動分析が重要です。具体的には、どの時期にどのような申込行動があるのか、参加後にはどのような行動に繋がっているのかを解析し、その結果をもとに企画の対象、開催時期、内容を決定しています。 認知広げる秘策は? さらに、集客においては「いつ、何を、どのように」告知して認知を広げ、申込を促し、開催前に離脱を防ぐ対策まで考えなければなりません。状況が常に変化する中で、申込状況をリアルタイムに把握し、必要な打ち手の変更を迅速に行うことが求められます。企画の効果が集客に影響するため、両者は密接に連携させる必要があります。 データ整備は進んでる? 現状では、まずデータの整備が最優先事項です。折り返し地点まで進めていますが、依然として地道な作業が続いています。正直なところ、「会社が整えておくべきだ」という愚痴も出るほどですが、しっかりと整備を進めなければ本質的な分析はできません。今後も引き続き取り組んでいきます。 管理方法はどうなってる? また、データの記録や管理、分析を効果的に行うためには、エクセルフォーマットの整備も欠かせません。どのようにすれば見やすく、管理しやすく、分析しやすいかを、部署メンバーと意見を合わせながら調整を進めています。この作業は地道ですが、本質的なデータ分析の議論に繋がっているため、継続して進めていく覚悟です。

データ・アナリティクス入門

一歩ずつ探す解決のカギ

課題発見はどうする? 分析の際は、プロセスごとに分けて検討することで、どの段階に課題が潜んでいるのかを見つけやすくなると感じました。原因の仮説を立てる際には、関連性が高いと思われる要素だけではなく、そうでない可能性も含めて「対概念」を活用し、視野を広げることが有効です。 解決策の比較は? また、複数の解決策を検討する時は、条件をなるべく同じにした状態で両方の施策を試す「A/Bテスト」が効果的だと思います。各プロセスごとのデータを丹念に分析しながら、仮説を練り、実践的に検証していくことで、問題解決の精度を高めることができると実感しました。 問題の本質は何? 問題解決においては、まず「What:問題は何か、どの程度の問題か」、次に「Where:問題はどこにあるか」、その次に「Why:問題はなぜ発生しているのか」、そして「How:対策はどうすべきか」と、手間を惜しまずにしっかりと向き合うことが大切だと考えています。 思い込みは避ける? 例えば、あるサービスの売上が低下した場合、その原因をプロセス別に網羅的に仮説することで、思い込みや決めつけを防ぐことができます。短絡的に一つの原因で結論づけず、見落としがちな小さな要因にも目を向けることが、より正確な原因特定につながるでしょう。 他の要因は何? さらに、売上低下の原因が購入者数の減少だと仮定した場合、すぐに「売価の上昇」が原因と結論づけるのではなく、もし売価の変動が原因でないとすれば、他にサービス内容の悪化など潜在的な要因があるのではないかと、幅広い視点で検討することが重要だと感じました。 成果検証はどう? 最後に、複数の施策を同時に実稼働させる「A/Bテスト」についてですが、一人の判断だけに頼らず、実際の成果がどの程度得られるのか、具体的な事例を交えて効果を検証してみたいと思います。

データ・アナリティクス入門

問題の原因をデータ分析で解明!

問題の原因をどう探る? 問題の原因を探るためには、データを確認しながら原因を突き止めることが重要です。問題の原因を明らかにするために、プロセスを分散して問題箇所を絞り込み、原因の仮説を立てるのが効果的です。問題がある場合、その結果には必ずその流れがあり、その流れを押さえることで、プロセスのどの段階に問題があるのかを特定できます。 解決策の検討はどう進める? 解決策を検討する際は、複数の選択肢を洗い出し、根拠を持って絞り込むことが求められます。ステップを踏んでデータを分析し、問題解決の精度を高めることと、仮説を試しながらデータを収集し、より良い問題解決に繋げることは、両者のアプローチを組み合わせることが効果的です。まず手始めに身の回りのデータを分析すること、分析の練習を積み重ねること、そしてどんな分析計画を立てるかシミュレーションし、どんな情報を誰から収集するのか、データはどんな形で収集すればよいかを考えることが大切です。 シンプルで低コストなA/Bテストの利点 A/Bテストは、AとBの施策を比較するシンプルなテストです。運用や判断がしやすく、低コストで少ない工数で実施できるため、リスクが少ない。A/Bテストを行う際には、目的や仮説をしっかりと明確にし、有効なデータが集まるまで実施します。ただし、複数の要素をテストしたい場合には別の手法を検討すべきです。また、パターンは同時に同じ期間行うことが必要です。 データ分析の第一歩は何から始める? 解決策を考えるときには、必ず複数の選択肢を検討し、「ステップを踏んでのデータ分析」と「仮説を試しながらのデータ収集」の両輪で分析を行うことが効果的です。分析が苦手な方には、まず身の回りのデータを分析すること、分析の練習を積み重ねること、そして問題にはそこに至るまでの流れがあることを意識することをお勧めします。

データ・アナリティクス入門

仮説力で見える未来のカタチ

仮説検討は効果的? フレームワークを使って仮説を検討する重要性を改めて実感しました。自分の視点だけで考えると、異なる仮説が実は同じ意味を持っていたり、抜け漏れや重複が生じ、MECE(漏れなく、ダブりなく)にならないことがあると感じました。また、業務では自社の既存データを中心に扱っており、外部のデータと比較する機会が少ない点にも気づきました。一般的なデータにも注意が必要で、信頼性が低かったり数値が大げさに見せられるケースもあるかもしれません。こうした状況だからこそ、学んでいる知識を活かし、有効なデータと信頼できる情報源を見極める必要があると思いました。 動画から何を学ぶ? 先週のグループワーク後に視聴した関連動画で紹介されたさまざまなグラフや分析手法も非常に参考になりました。自分がこれまでなんとなく実施していた方法が当てはまる部分もあれば、これまで注目していなかった視点に気付くこともあり、改めて復習する意欲が湧きました。 実務で新発見は? 実務では、指示通りに同じグラフを作成することが多い中、自分自身でフレームワークを活用して仮説を立て調査することで、新たな発見につながる可能性を感じています。現在の職場では、これまでにない未来的な取り組みが多く、自社の過去のデータだけでは捉えきれない視点が必要だと再認識しました。大きな歴史的流れに沿った視点も、今後の改善に大いに役立つと考えています。 改善策の検証は? まずは、フレームワークを用いて「どの部分が改善され、会社の売上に貢献できるか」という仮説を立て、データの収集と検証に取り組みたいと思います。また、データだけに頼らず、職場の改善点や取り組みについても多角的な視点を持って検証することで、会社全体の業績向上だけでなく、自分自身の成長につながる発見があると期待しています。

戦略思考入門

選択と捨てる勇気で未来を切り開く

どんな選択が必要? 私たちが何を得るかと同じくらい、何を捨てるかという選択の重要性を学びました。戦略の一環として「捨てる」ことに対して、明確な見通しを持ち、周囲に適切に伝える準備が大切だと感じました。 何のために捨てる? 選択(捨てる)の必要性は、顧客にとってのメリットが向上する場合があることを再確認する点にあります。具体的には、「何のために?」という視点をしっかり持つことが重要です。時には、捨てることで顧客の利便性が増すことがあります。例えば、あるパフォーマンス集団が動物を排除することで、人間の高度なパフォーマンスに注力できるようになったという具体例が理解を深めました。 なぜ変革が必要? 長年の惰性に流されず、現状から最適な解を探求することが肝心です。「やめましょう」という勇気を持ち、新しい意見を取り入れることも重要で、これが惰性による無駄を排除するヒントとなります。 業務はどう見直す? 業務プロセスの見直しにおいては、優先度の低いタスクを削減し、手動作業を自動化・簡素化することが必要です。サポート範囲の見直しでは、対象の中止や範囲を低減し、FAQやセルフサポートを導入するといった方法があります。データの管理と報告の効率化として、不要なデータを整理し、報告を簡略化することが挙げられます。 再構築はどう進む? 「捨てる」という選択は価値を高めるための再構築と覚悟すべきです。具体的には以下のステップが有効です。まずは目標と優先順位の明確化を行い、リソースの把握を通じて捨てるべき項目の候補を挙げます。その後、捨てる対象を決定し、チームで共有します。そして、捨てた後の行動計画を策定し、計画的に新たに生まれたリソースを活用します。最後に、実行後はモニタリングを行い、捨てた結果が本当に改善されているかを確認することが大切です。
AIコーチング導線バナー

「同じ × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right