クリティカルシンキング入門

課題解決の秘訣は「問いのブレ」防止

イシュー特定はなぜ重要? イシューの特定の重要性を改めて実感しました。それ以上に「問い」の方向性をブレないよう意識し続けることの重要性に気付かされました。課題を特定し、イシューを設定した後、実際に分析や議論に移る際、この「問い」がブレることが多々あります。気づけば最初に設定したイシューからずれた議論をしていることが何度もありましたので、改めて見直したいと思います。 データ分析で避けたいミスは? データ分析においては、「問い」の方向性がブレてしまい後で気づき、やり直しが発生することがしばしばです。数字に触れ始めると、「分析」に夢中になり、本来の目的を見失ってしまうことがよくあります。特に注意すべきは「やった気になってしまうこと」であり、過去の経験を通じてこれを痛感しました。この講座を通して学んだフレームワークを意識し、同じ失敗を繰り返さないようにしたいと思います。 言語化の効果とは? 「イシューを押さえ続けること」は「意識」するだけでは難しいため、言語化を必ず意識したいです。言語化することで、自分だけでなく、周りの方との認識統一にもつながります。これができると、自分が「問い」からずれていても、「誰かが気づき」修正してもらうことができます。自身の考えを客観的に見ることは重要ですが、完璧にはできません。常に第三者のヘルプも借りながら進めたいと思います。

データ・アナリティクス入門

データ分析で見えた本当の価値とは

データ分析の目的を明確に データ分析は、目的を持たずに取り扱うと、ただの意味のない数字でしかありません。そのことを今回の学習で目の当たりにすることができました。データ分析を行うにあたっても、なぜその分析をするのかという背景が見えなければ、同じ数字でも全く違った見え方をしてしまいます。そこで重要なのは、何を目的として分析を行うのかを明確にすることです。目的意識を持ち、定量的にデータを取り扱うことの重要性を学びました。 データで組織をどう活性化? 施策推進について考えると、個々の受付完了指標から組織や部単位での比較まで、データの切り口は多岐にわたります。組織が正常に稼働しているか、個人については「自分は頑張れているか」を評価することができます。さらには、何をもっと伸ばし、何を改善すべきか、メンバーのモチベーションの維持・向上のためにデータを利用したいと考えています。 データの伝達手段は? データを出すタイミングについては、デイリーにするか毎月末にするかなど様々な選択肢があります。組織やプロジェクトチームが活性化するための指標として、データを積極的に活用していきたいと考えています。データの伝達手段もまた多様で、メールや対面、ミーティングなどがあります。伝えたい内容、そのボリュームや重要度に応じて手段を使い分け、効果的に展開していきたいと思います。

データ・アナリティクス入門

分析力で交渉力を高める秘訣

比較の重要性をどう捉える? 分析の本質は比較にあります。条件を揃えて比較することが重要であり、この際、目の前の情報に引っ張られないよう注意が必要です。また、目の前にないものについても、目的に照らして何と何を比較するべきかを見極めることが重要です。最終的に、分析によって明らかにしたいことを明確にし、その目的に沿った比較対象を選定することが求められます。 交渉をどう深める? 私の場合、データを直接使用する仕事ではありません。しかし、交渉事の割合が多いため、この考え方を活用したいと考えています。例えば、説明や交渉時に事実を列挙することは重要ですが、それだけでなく、「もしそれがなかったらどうだろう?」といった異なる前提を考慮に入れた論理構成を加えることで、説明や交渉に深みを持たせたいと考えています。 分析に必要な視点とは? 抑えるべきポイントは以下の通りです。まず、目的を明確にすることです。今までの行動パターンでは、調べて比較するというアクションをとっていましたが、結果的にただ彷徨い、同じ場所をぐるぐるしているだけでした。 見えない情報をどう扱う? さらに、目に見えない情報も考慮する必要があります。目の前の情報だけで判断すると、ありきたりで的外れな結論に至ってしまうことがあります。正しい分析方法を身に付けたいと強く思っています。

戦略思考入門

規模と範囲の経済性を活かす鍵

規模の経済性とは? 規模の経済性と範囲の経済性は、ビジネスにおいて重要な概念である。生産量を増やすことでコストを削減できる規模の経済性を追求することは有用だが、注意しなければならないのは、これが過度になり、かえって利益を阻害する規模の不経済に陥る可能性もあるということだ。一方、範囲の経済性は、異なる商品を同じ生産設備で生産しコスト削減を図るもので、ビジネス環境においても応用が効く。例えば、他部署や他社での経験を新しい仕事で活かすことで、経済性を高めることができる。 個人としての成長戦略とは? 自社の場合、規模の経済性を活用することは得意だが、範囲の経済性は十分に発揮できていない。今後は、自社のビッグデータを上手に活用したビジネスを見つけ出し、ビジネスの基盤をより一層強化していく必要があると考えている。 個人としては、現在の職務を徹底的に極めることが重要であると感じた。このことは、将来的に他部署に配属された際に、範囲の経済性を高めることに繋がると考えている。具体的には、備品什器の仕入れにおいて、自部署では規模の経済性を活用している。現在、自社工場への移行を進めることで仕入れコストを下げているが、価格交渉の見直しを行うことも検討する価値があると感じた。また、自身のスキルについてはその棚卸を行い、得意分野と苦手分野を明確にしていきたい。

データ・アナリティクス入門

仮説思考で学びを実践、諦めない心の重要性

仮説思考で成果を出すには? 仮説思考の鍛え方について体系的に学ぶことができ、非常に勉強になりました。毎回同じような学びであっても、体系的に言語化することで再現性が高まるため、自分で実践するにも他の人にアウトプットするにも非常に参考になります。 諦めない姿勢の重要性を再確認 仮説思考の鍛え方を通じて、「諦めず・熱意を持って・仮説を考え続ける」ことの重要性を改めて感じました。理解するだけではなく、それを実際に実践し、成果に結びつけることは非常に難しいです。そのため、「諦めない」ことがもっとも大切であると過去を振り返って改めて感じます。 継続的なデータ分析の意義とは? 経営データのデータ分析については、じっくりと分析する機会はあるものの、継続的には行っていません。課題は次々に発生するため、つい短絡的に結論を出してしまいがちです。これからはしっかりと時間を確保し、仮説検証を繰り返し行って問題解決の精度を高めていきたいと思います。 タスク整理と学びのルーチン化 まずは自分のタスクを改めて整理し、優先順位の低いものは権限移譲するか、削減して時間的余裕を生み出します(9月中に実施します)。また、毎週土曜日は極力「学びと実践」の時間とし、仮説検証を毎週のルーティンとして実践していきたいと考えています(今週から開始します)。

クリティカルシンキング入門

データ分析で広がる新たな視点

データ分析の基本を押さえるには? データを分析する際には、全体を定義し、MECE(漏れなく、重複のない)を意識した仮説を立てることが重要です。これにより、さまざまな切り口でデータを見ることができ、効果的な分析が可能となります。 また、データをグラフ化することで、視覚的に分かりやすくなり、判断基準を明確にすることができます。ただし、与えられたデータだけで結論を出すのではなく、自分自身で手を動かして深く分析し、異なるデータから他の現象が存在しないか確認することも重要です。 新たな分析法をどう模索するか? 販売データの分析においては、毎月同じ切り口でデータを出している現状があるため、新たな切り口を検討し、どのようにMECEで考えていくべきかを模索したいです。提供された資料の確認の際にも、仮説を持ち、さらに分析を深めることで、他にない切り口を模索していきたいと考えています。 データに接するたびに、MECEが適切にできているか、他にどのような分析の切り口が考えられるのかをしっかり考えたいと思います。また、数字をグラフ化することで、よりわかりやすく情報を整理することの重要性を学びました。これにより、固定概念に囚われず、批判的な視点を持ちつつ柔軟なアプローチでデータに向き合っていきたいと感じています。

データ・アナリティクス入門

多角的な視点で挑む数字の謎解き

なぜ一案に固執しない? まず、今回最も学んだのは、あらゆる可能性を考慮し、単一の仮説に固執しない分析の大切さです。たとえ一つの数字が上下したとしても、その変動の要因を丹念に探ることが、次の一手を効果的に打つためには必要不可欠であると感じました。 どうして検証が偏った? 業務上、多くの数字を扱う中で、変化の原因を憶測だけで判断してしまっていたことに気づきました。実際、決め打ちした仮説に基づく検証に偏り、他の可能性を最初から除外していたため、十分な検証ができない場合がありました。今後は、ある要因が数字の変動に影響していると考えた際に、同じ要因が別の状況でも現れているかどうかを比較し、分析の基本である比較の原則に立ち返って検証していきたいと考えます。 なぜ多角的に議論する? さらに、仮説を立てた後すぐにデータ分析に入るのではなく、他に考えられる仮説や視点がないかあらゆる角度から検討することが重要だと再認識しました。特に、一人では気づかない視点も存在するはずなので、複数人でデータを見比べる必要性を感じています。そのため、早速4月からは、より多角的に意見を交わせる組織体制に変更できるよう動いています。

データ・アナリティクス入門

数字に秘めた改善の真実

平均と中央値はどう違う? 平均は全体の傾向を示す便利な指標ですが、外れ値の影響を受けやすいため、必ずしもデータの中心を正確に表しているわけではないと再認識しました。一方、中央値はデータを並べたときの中央の値であり、外れ値の影響が少ないため、偏りのあるデータに対して有効だと感じています。また、標準偏差を活用することで、同じ平均値でもデータのばらつきに違いがあることを明確に把握できる点が印象に残りました。 営業改善、ポイントは? 営業店の業務改善においても、代表値を活用する意義を学びました。具体的には、各店舗の業務処理時間を平均と中央値で比較し、処理時間が極端に長い業務がないかを確認することで、改善策の提案につなげる方法が効果的です。さらに、各営業店ごとの業務プロセスのばらつきを標準偏差で表現し、オペレーションの違いを把握する取り組みが有用であると考えています。 業務負荷の見極めは? また、ヒストグラムなどを用いて業務負荷の高い部分を特定し、改善の優先順位を決める手法にも触れ、業務効率化の進捗をグラフでフィードバックすることで、改善効果を視覚的に伝える方法の重要性も実感しました。

データ・アナリティクス入門

データで意思決定を変える!ビジネス革命の鍵

意思決定プロセスを学ぶ意義とは? この講座を受講して、経営における意思決定のプロセスについて深く理解することができました。特に、現実のビジネスシーンをシミュレートしながら戦略を立てることで、理論だけでなく実務への応用が見えてきました。 データ分析の重要性をどう感じた? 最も印象に残ったのは、データ分析の重要性についての講義でした。これまでは直感や経験に頼っていた部分が多かったのですが、客観的なデータを基に判断することで、より確実な結果が得られることを実感しました。また、データの選定や分析方法についても具体的な手法が紹介され、すぐにでも実践に生かせる内容でした。 グループディスカッションの収穫は? さらに、グループディスカッションを通じて、他の受講生との意見交換や視点の違いを知ることができたのも大きな収穫です。同じテーマでも異なる業界や職種の視点を知ることで、新たな発見や気付きがありました。 講座をどれだけ活用できるか? 全体として、非常に実践的で充実した内容の講座でした。今後もこの知識を活用して、より論理的かつ効率的に業務に取り組んでいきたいと思います。

データ・アナリティクス入門

比較で解き明かす分析の魅力

分析の苦手意識はどう変わった? 分析は比較なり、という言葉をきっかけに、これまで抱いていた「分析」という言葉への苦手意識が和らぎました。分析を「要素に分解し、比較する」とシンプルに捉え直すことで、データ分析の目的や方法を改めて見直す機会となりました。また、比較する際には、常に同じ条件である「Apple to Apple」を心がけることが重要であると理解できました。 継続率向上の秘訣は? 分析の目的を明確に定めた上でデータを取り扱い、最終的には意思決定に結びつけることが目標です。特に、サービスの継続率向上に向け、何があればサービスが続けやすいか、または辞めてしまうかという点から、顧客ニーズをより深く分析していきたいと考えています。 資料の真意は何? これまで、分析担当者が作成した資料をそのまま受け取るだけでしたが、今後は「何の目的で、どの要素を比較しているのか」を意識して資料を読み解くよう努めます。さらに、顧客のサービス継続率や利用・活用率といった数値を日々確認し、昨年比の大まかな変動だけでなく、そこから導き出せる具体的な示唆についても考察を深めていくつもりです。

データ・アナリティクス入門

営業予測を刷新する新アプローチ

フレームワークの効果的な活用法とは? 今回の学びの中で、フレームワークのツールとしてロジックツリーとMECEが紹介されました。ロジックツリーは課題を細分化し、発見しやすくするための手法であり、MECEは問題をもれなく、ダブりなく整理するために必要な概念です。それぞれは様々な場面での分析に利用されますが、今回の復習を通じて今後の活用に向けた理解を深める機会となりました。 営業予測の新アプローチを試すには? 営業予測を行う際には、これまで直感に頼った予測を立ててしまいがちでしたが、今後は課題を分類し、分析した上で予測を立てることを心掛けたいと考えています。この新しいアプローチにより、異なる視点での分析が可能となり、より精度の高い営業予測が期待されます。 MECEを使った分析で得られるものは? これまでは同じ視点でデータを取り出して分析を行っていましたが、今後は課題を洗い直し、顧客の職種や規模、場所など、さまざまな角度からMECEを意識した分析を進めていきます。これにより、売り上げを伸ばすための施策のヒントを得られ、より具体的な情報収集と活用が期待されます。

データ・アナリティクス入門

数字に潜む新発見と未来への一歩

平均値の使い方は? 単純平均だけで判断すると、外れ値の影響でデータの見誤りが発生する可能性があることに気づきました。これに対して、加重平均や幾何平均についてはこれまで自分自身で使った経験がなく、今後習得していきたいと考えています。これまで、適材適所の数値の出し方をあまり意識していなかったという反省もあります。 データ分析はどう? セミナーの申込者数やWebからのコンバージョンの分析において、年商別や案件化金額などのデータを、散らばりや加重平均、幾何平均を取り入れて比較分析したいと考えています。具体的には、同じソリューションのセミナー同士や異なるソリューション間の比較、時期を分けた比較、Webとセミナーでのリードの比較など、さまざまな切り口で分析を行いたいと思います。 比較検討の進め方は? まずは、参加者が多く、分析しやすい直近のセミナーを対象に、年商別の申込者数や過去のセミナー参加数を、前回同じテーマで実施したセミナーと比較してどのような変化があるかを検討する予定です。その結果を踏まえ、他のソリューションのセミナー分析にも展開していく狙いです。

「同じ × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right