クリティカルシンキング入門

伝えたい順で魅せるスライド術

伝える順序は大切? 学びの中で、まず伝える順序に着目することの重要性を再認識しました。スライド作成時に、まず何を伝えたいのか、またその根拠としてどのグラフやデータが必要かを意識することで、受け手にとって分かりやすい資料が作れると感じました。さらに、資料全体の色調、書体、イラストなど、視覚的な要素にも工夫を凝らすことで、相手にどう捉えてもらうかを考える機会になりました。 実務での活用はどう? また、学んだ内容は実際の業務にも直結しています。社内の戦略会議や中間報告、トラッキング結果の共有など、社内向けのプレゼン資料作成で活用できることが実感できました。顧客への説明資料においては、製品の伝えたいメッセージや、説得力のあるエビデンスの見せ方に役立っています。 資料見直しの効果は? さらに、カタログや各種資材の作成においては、我々が何を伝えたいのか、そのためにどの情報をどのように見せるかを工夫する上で、大変参考になりました。作成した資料は翌朝に再度見直すことで、伝えたい内容が改めて明確になり、スライド全体を俯瞰して強調すべきポイントやグラフの見やすさを確認する習慣が、資料の質をさらに向上させています。上司や同僚の意見を取り入れることや、資料作成後にロープレで流れや根拠を整然と説明できるか確認するプロセスも、非常に有益な学びとなりました。

デザイン思考入門

試作とフィードバックで見つける新たな一歩

目的と設計はどう変わる? 自分の目的と相手の目的を整理しながら、自社のWebサイトの設計を見直す必要性を感じました。無形商材の場合、ユーザーに疑似体験させる工夫が重要で、サービスの流れや機能を紙やスライドで視覚化し、細かいフィードバックを受けることが効果的だと考えています。 試作で何を掴む? 試作(テスト)からフィードバックを迅速に得ることが大切です。また、どのようなフィードバックを求めるかという視点を事前に持つことも必要だと感じました。課題の定義や情報設計が漠然としていると、良い試作へとつながりにくいため、前提をしっかり作り込み、アイデアを十分に出し切ることが重要です。 小さな挑戦はどう効く? さらに、小さな試みを積み重ねることで、結果的に近道が見えてくると実感しています。正解へいち早く辿り着きたいという焦りが、かえってネックになることもあるため、スピード感と丁寧さの両面を大切にしていきたいと思います。 情報設計で成果を出す? 情報設計においては、自分の目的と相手の目的を再検討し、課題の定義と連動させる余地があると感じています。さまざまなプロトタイプが存在し、それぞれの簡易さや工程の多さに違いはあるものの、得られるフィードバックの質にも個性があり、細かな確認を積み重ねることで質の高い成果物を生み出すと確信しています。

クリティカルシンキング入門

伝わる!数字×図表のプレゼン術

ビジネスで何が伝わる? あらゆるビジネスシーンで、相手に情報を伝え、行動を促すためのノウハウを学びました。図による伝達と、文章での表現それぞれのポイントを体系的に理解できたことが大きな収穫です。 どう伝えれば効果的? 図を用いて情報を伝える際は、以前学んだ「数字に意味を持たせる」という考え方を意識します。図や表を作成する際には、何を目的に、どの情報を伝えたいのか、そしてその結果として相手にどう変化してほしいのかを想像することが重要だと感じました。また、スライド作成時には、体裁を丁寧に整える基本的なことの重要性を改めて確認しました。 職場で活かせる? 現職では、営業やマーケティングの数字を分析し報告する機会が多いため、今回学んだノウハウはあらゆるプレゼンテーションで活かせると確信しています。さらに、ビジネスライティングは、たとえ職を離れても生涯にわたって必要な能力であるため、日々実践を重ねていきたいと思います。 コミュニケーションの工夫は? 毎週の経営報告においては、作成したスライドで何を伝えたいのか、相手がどのような状態になってほしいのか、そして何を求めているのかを常に意識するように努めます。部下とのコミュニケーションにおいても、目的や手法、丁寧さを重視し、より伝わるコミュニケーションを実現していきたいと考えています。

データ・アナリティクス入門

実践で磨く、A/Bテストの秘訣

情報伝達の大切さは? 今回の学びを通して、情報が漏れなく重複なく伝わることの大切さを改めて認識しました。目的を見失わず、必要なポイントを抑えることの重要性が意識されました。 A/Bテストの効果は? 特に、A/Bテストの活用は検証のしやすさや結果の共有において分かりやすい手法であると感じました。一定の制限をかけ、絞り込むことで方向性を見失わずに進める工夫にも気づきました。 広告運用のコツは? 実務でgoogle広告を活用する中で、A/Bテストの形式で構成され、AIが複数のセンテンスを組み合わせることで広告の最適化を図る仕組みを再認識しました。小さな変更を繰り返すアプローチは、実際にすぐ活用できる効果的な方法だと実感しています。 プロモーションはどう? また、運用しているプロモーションに関しては、早速実践に移し、チーム内で共有して理解を深めることが重要だと感じました。取得したデータをもとに分析し、意見を擦り合わせることで、より精度の高い施策へと進化させていく予定です。 チームでの改善は? 今後は、A/Bテストの手法をさらに高度なものにグレードアップすることも視野に入れています。ただし、個々のスキルに偏ることなく、チーム全体でアウトプットの場を設け、ディスカッションを重ねるよう取り組んでいきたいと考えています。

データ・アナリティクス入門

分布も味方に!データ分析の学び

平均値と分布への疑問は? 代表値を用いた分析手法が有効であると実感しました。たとえば、平均値(単純平均)を用いることで全体像を把握できる一方、データがどの程度集約されているのか、またはばらついているのかを判断することは難しいため、平均値とデータ分布の両面から検証する重要性を学びました。 データ分布の検証は? データ分布を確認する手法としては、標準偏差が挙げられます。標準偏差の値と集計結果に大差がなければ、分析の正確性が高まると感じました。また、分析内容に応じて単純平均、加重平均、幾何平均、中央値など様々な代表値を使い分けることで、異なる角度からの洞察が可能になることに気づきました。 仮説検証の進め方は? さらに、データ分析は比較を前提としているため、問いやゴールを明確に定め、仮説の設定、データ収集、仮説検証というプロセスを徹底することが大切だと学びました。これを繰り返すことで、より精度の高い結論に到達できると実感しました。 実践例の応用は? また、実践例として、交通系ICカードの決済実績を分析する際には、切り口別に代表値や分布の状況を組み合わせる手法に取り組みたいと感じました。ヒストグラムなどを用いてビジュアル化することで、報告相手にわかりやすく情報を伝える工夫が、今後の分析の質向上につながると考えています。

クリティカルシンキング入門

数字が紡ぐ学びのストーリー

数字をどう分解する? 数字はグラフ化することで、視覚的かつ直感的に捉えやすくなり、説得力が増します。そのため、数字から情報を得る際は、ひと手間加えて分解することが重要です。ただし、単に区切るのではなく、仮定を立てた上でMICEを意識した切り口で分解する必要があります。分析を進めて結論にたどり着く過程では、短絡的な判断を避け、「本当にそうか?」と立ち止まって丁寧に確認する姿勢が求められます。 システムプロジェクトで何が大事? システムの導入や改修、さらには現行システムの廃止などのプロジェクトを進める際には、現状の課題と期待される改善点を明確に提示するために、数字を用いたデータ分析が役立ちます。システム関連のプロジェクトは多額の費用が動くため、慎重な判断が必要です。そのため、さまざまな切り口からデータを分解し、要件と費用の比較検討に活かすことが大切です。また、社員向け研修の終了後には、受講者アンケートの結果を分析し、そのフィードバックを次の計画に反映させる方法も有効です。 苦手意識はどう克服? 一方で、数字に対して苦手意識を持つ人もいます。私自身、業務で直接データを扱う機会はあまりありませんが、定期的に報告される各種レポートを基に、MICEを意識した分解の手法やデータの取り扱いに徐々に慣れていきたいと考えています。

戦略思考入門

戦略思考で未来を切り拓く秘訣

戦略思考を深掘りするには? 戦略思考について改めて考えてみました。具体的なフレームワークを用いて書き出してはいないのですが、一部については無意識に頭の中で実行していたようです。ですが、文字に起こすことにより、自分の理解を深め、より具体的な形にすることができました。 進捗確認のポイントは? 新規プロジェクトの立案だけでなく、進捗の確認の際にも、「ゴール確認→環境分析→捨てる勇気」といったプロセスを繰り返すことで、効率的かつ効果的な結果を得られると感じます。さらに、最新の動向に基づいた分析が必要だと考えています。マニュアルや慣習に依存しがちな面があるため、それにも注意を払いたいです。 自分の言葉は合ってる? また、他人の話を聞いてわかった気になるのではなく、自分の言葉でアウトプットすることも重要です。目標設定だけでなく、その目標に至る過程、特に「捨てられるものはないか」を意識することが肝心です。慣例的に行っていることが本当に必要なのか、利益が停滞していないか、しっかりと精査する必要があります。 変化にどう対応する? さらに、時代の流れを敏感に捉え、情報収集を怠らないようにし、過去の成功体験に囚われない姿勢が重要です。自社や自分の強みを振り返り、差別化を意識し続けることが求められます。

データ・アナリティクス入門

比較で見える新たな視点

比較方法はどう決める? 分析の基本は比較にあります。分析対象をただ単に見るのではなく、相違点や類似点を明確にするため、対比できる条件を設定しながら進めることが重要です。 数値の意味はどう捉える? 定量分析を行う際は、単に数値の平均値や個数を求めるだけではなく、その背後にある意味を捉えることが求められます。例えば、男女のデータ分析においては、単位に数値を割り当てた場合の平均値そのものに意味はなく、それぞれのグループの人数や全体に占める割合を把握することで、ターゲットや戦略を導く上で有効な情報が得られます。 グラフの選び方はどうする? また、データの視覚化は、分析結果を他者と共有する際に非常に有効です。グラフを用いることで、複雑な情報も整理され一目でわかるようになりますが、データの特性に応じた適切なグラフ形式を選ぶことが大切です。 仮説設定をどう見る? さらに、分析においては、目的や仮説を明確にしてから着手する姿勢が重要です。分析する際は、比較対象となる条件を十分に整え、個々のデータに対してどの指標(個数、平均値、標準偏差など)を用いるかを慎重に検討することが必要です。自分が伝えたいメッセージと、相手がどの程度の情報を理解できるかを意識しながら、適切なグラフや表現方法を選ぶことも忘れてはなりません。

データ・アナリティクス入門

データ分析に固執しない学びの本質

効果検証を改善するには? 今週の講義内容は、すでに実践していることをさらにブラッシュアップして継続する必要があると感じました。特に効果検証については、ノイズを排除しきれずにABテスト自体が難しい場合や、施策の実施数が多く、全ての分析を物理的に行うことが困難な場合があります。 デジタル時代のデータ分析とは? デジタル領域では、質よりもスピードが重要な場面が多くありますので、完璧なデータ分析に固執しすぎないことも心掛けたいです。データ分析はあくまで結果を出すための一つの手段に過ぎず、それ自体を目的としないことが大切だと再認識しました。 仮説思考を磨くために何が必要か? また、仮説思考を鍛えるためには、思考力を磨くことが最も重要だと感じました。情報を集めたり事象を分析しているだけでは、思考の精度は上がりません。本当に必要な情報を見極めるために、何のために情報を集めるのかを自分の頭で考えるトレーニングが必要です。 行動で成果を生み出す方法は? さらに、答えを持っている人に対して自分の仮説を試してみることも大事です。不正解でも良いので、アウトプットする機会を増やし、トライアンドエラーを繰り返すことが重要です。成果は行動することでしか生み出せないため、とにかく積極的にアクションを起こすことが求められます。

データ・アナリティクス入門

言語化と分析で見える未来

比較ってどう見る? 分析とは比較することであり、これまであまり意識してこなかった点でしたが、意識することで適切な図表や色の検討が可能になります。根底にあるのは目的であり、目的を意識することで、比較して何を伝えたいのかが明確になります。 自分化の意味は? 学びのプロセスにおいて、「言語化」「教訓化」「自分化」は非常に重要な考え方です。特に、教訓化と自分化が自分自身の成長に大きく寄与すると実感しています。 施策にどう活かす? 業務を分析し、施策を練る際には、根拠となる情報を集めて問題点を特定することが有効です。また、「言語化」と「教訓化」を意識することで、会議などで他人の進捗状況を聞いた際に、自分の考えの幅や経験値を広げる一助となっています。 仮説はどう考える? 分析に取り組む際は、目的を常に意識することが大切です。まずは「現状を可視化する」ために図表化を実施し、その結果を踏まえて仮説を立案します。そこから、より限定的な部分の分析を進めることで、精度の高い課題の解決へと結び付けています。 会議はどう捉える? 内部の会議においては、ただ受け身で情報を聞くのではなく、他人の発言をそのまま鵜呑みにせず、原理原則を抽出して自分自身の状況にどう反映できるかを検討することが重要であると感じました。

データ・アナリティクス入門

仮説とデータが紡ぐ物語

分析の始まりはどう? データ分析は、まず解決すべき問題を明確にし、最終的な結論のイメージを持つところから始まります。すなわち、最初に仮説を立て、what、where、why、howという流れに沿って必要な情報を整理することで、分析の方向性を定めることが大切です。 データはどのように収集? 次に、必要なデータを収集します。その際、実際の数値と割合の両面から確認を行い、一方に偏らないバランスの取れたデータ把握を目指します。必要な情報が不足している場合は、自らデータを集める方法も検討すべきです。評価方法においては、あいまいな表現や中間的な回答を避けることが重要です。 図表でどう伝える? 収集したデータは、次に加工して見やすい図表などにまとめます。どのような表現方法がデータの散らばりや相関を直感的に理解させるかを判断し、情報を具体的かつ明確に提示することが求められます。 仮説はどう再検証? そして、整理されたデータをもとに、当初の仮説に沿って分析を進め、発見に結びつけます。この過程では、what、where、why、howの各側面で原因と結果を再確認し、客観的な視点で全体のストーリーを見直すことが大切です。また、既存の仮説にとらわれず、新たな価値ある仮説の構築に努めることも求められます。

データ・アナリティクス入門

問題解決力が飛躍的に向上した学び

問題の明確化の重要性とは? 問題解決の4ステップ(What→Where→Why→How)のうち、最初のWhat(問題の明確化)の重要性について学びました。問題の明確化には、ゴールと現状とのギャップを定量的に数字で示すことが大切です。これにより、現状維持でよい部分と強化すべき部分が明確になります。 未来を見据えた戦略とは? さらに、問題がない場合でも、よりよい結果を目指してテコ入れをする際(例えば単価改定や機能追加など)には、現状の状況判断が重要です。また、「もれなくダブりなく」というMECEの洗い出しも欠かせません。 情報共有を促進する方法は? 例えば、自社ECサイトの会員数を120%に伸ばしたい場合、ロジックツリーやMECEを使って会員登録のモチベーションとなる部分を洗い出したり、利用者に行うアンケートの項目を設定する際に役立つと感じました。ロジックツリーを使うことで情報を可視化し、他のメンバーとの情報共有にも役立てられそうです。 過去の例に頼らない新しいアプローチとは? これまで、企画やプロモーションは過去の例を参考に進めることが多かったですが、今後は目的を明確化し、What(問題の明確化)を意識して進めることで、現状の把握に役立て、それを基にした立案に活かしていこうと思います。

「結果 × 情報」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right