データ・アナリティクス入門

数値を超えて感じる学び

比較基準はなぜ? 率の比較を行うことで、比較の基準を統一できることが分かりました。実践におけるクリック率やコンバージョン率の違いを、単に数値だけで良し悪しを判断するのではなく、プロセスを分解して問題点を洗い出す視点が重要だと感じました。その結果、新たな気づきや解釈が生まれる可能性があることも実感しました。 幅広い思考はどう? また、原因を探る際には「思考の幅を広げる」ことが大切であると分かりました。抽象的な要素を積極的に取り入れ、そこから掘り下げる手法が効果的であるという点も大きな収穫です。 集計活用はどうする? 実際の業務でどこまで活かせるかは未知数ですが、今回の経験を基に、依頼されたデータの集計を活用して分析に取り組んでみようと考えています。職場の方からもアドバイスをいただき、お支払いされた方の年代や件数などから比率を算出し、それらを抽象的な観点で分析することで、販売活動に活用できるデータへと繋げられないか検討していきたいと思います。 分布の謎は何? まずは抽出したデータから比率を計算し、年齢などの属性が支払いにどのように影響しているのか、その際の母数の設定についても検討していきます。その後、なぜこのような分布になるのか、概念的な原因を考え、さらに深く掘り下げてみたいと考えています。

クリティカルシンキング入門

業務成功の鍵はイシューの特定!

イシュー設定の重要性に気づく 業務に取り組む際のイシュー(本質的な問い・課題)を立てる重要性とその方法を理解しました。これまでは業務の本質的な課題を意識することを忘れていましたが、その大切さに改めて気づかされました。また、状況に応じてイシューが変化する可能性があること、一度立てたイシューを継続して意識し続けることの重要性も感じました。 フロー作成時のイシュー特定法 新規業務のフロー作成や既存業務のフロー確認において、まずイシューを特定することに着手します。突発的な業務についても、その場の感情や流れに任せず、必ずイシューを特定するよう努めます。また、状況に応じてイシューが変わる可能性を理解しているため、固定されたルーティン業務でも定期的に振り返り、その業務のイシューを再確認していきます。 議論を活かすために必要なこと 新規業務のフロー作成や既存業務のフロー確認、イレギュラー案件や突発的な依頼、会議など、議論の場においてもイシューを特定し、全員で方向性を共有することで建設的かつ適切な根拠をもとに議論が進みやすくなると感じました。社内アンケート結果をもとに課題を抽出する際にも、まずイシューを特定することを心がけ、その際には過去に学んだピラミッドストラクチャーを活用して根拠が明確になるようにします。

リーダーシップ・キャリアビジョン入門

フィードバックで成長を促すコツ

フィードバックの心得は? フィードバックを行う際には、慎重な心構えが求められます。特に評価が低い場合には、納得感を持ってもらうことが重要です。フィードバックを受けた相手のモチベーションを維持し、未来に向けた前向きな気持ちを引き出すためには、相手の心情に配慮した言葉選びと表情が大切です。また、具体的な事実や数字を提示することで、現在の達成度を明確にし、納得感を高めます。 低評価はどう伝える? 低評価を伝える際には、批判するのではなく、成長を促すスタンスを心掛けましょう。フィードバック後には、受け手が今後取り組むべきことを明確に理解し、前向きな気持ちで面談を終えられるよう目指すことが重要です。自己評価と異なる意見を伝える際も、アプローチ次第で結果を大きく変えることができると信じて、メンバーと向き合いましょう。 年上部下への伝え方は? 経験豊富な年上の部下を持つ場合には、大きなハレーションを避けるため、アプローチに一層注意を払う必要があります。しかし、リーダーとしての役割を果たし、組織や顧客のために必要なことは率直に伝えることも求められます。相手へのリスペクトを忘れず、組織の発展に貢献するために何をすべきか、しっかりと考えを持ちながら部下とのコミュニケーションや1on1面談に臨みたいと考えています。

アカウンティング入門

振り返りが生む分析力と発見の旅

指標分析の重要性を理解する 売上高、営業利益、経常利益、当期純利益といった指標の順番で分析することの重要性を学びました。分析に際しては、比較や対比を用いて傾向の変化や大きな相違点を見出すことが必要です。 説明を丁寧にする意識を高める ケーススタディの設問に答える際に感じたこととして、コアな部分は捉えられているものの、顧客心理の説明においては、もう少し丁寧に説明する必要があると気づきました。これは、言葉足らずな部分を丁寧にカバーすることを軽視していた結果であり、もっと丁寧に説明する姿勢が重要だと実感しました。今後は、説明の出口部分から意識をより高めていこうと思います。 提供価値の分析と強化点は? 自社の提供する価値と競合他社の価値をP/Lから分析し、それによって自社が強化したい点や改善すべき点を考えてみます。さらに、自分が関わる事業の商品やプロモーションで今後どのように注力していくかを検討したいと思っています。 数字の定着と今後の計画 自社のP/Lデータはすでに確認しましたが、数字を頭に定着させるために直近2年分と今期の予測を自分でまとめ、空で言えるようにしてみようと思います。競合他社のデータについては、今後数週間で確認する予定です。そして、推薦いただいた本もぜひ読みたいと思っています。

データ・アナリティクス入門

データ分析で結果を出すための工夫

データ分析の目的を明確に データ分析を行う際には、以下の点を重視する必要があります。 まず、分析の目的を明確にすることが重要です。分析の本質は比較にあり、適切な比較対象を選ぶことが求められます。そのためには、どのような項目をどのように分析するかという仮説を立て、それに基づいてデータを集め、分析することが必要です。そして、目に見えないデータや事象も考慮しながら、見せ方(例えばグラフなど)にも注意を払います。 マーケティング成果発表の準備は? 分析をする際の初めのステップは、「誰に」「何を」伝えるためにこの分析を行うのかを明確に意識することです。特に、次の期のマーケティング部門の成果発表で伝えるメッセージを考えるには、この意識が不可欠です。 来期施策に活かす分析のポイント 次に、来期の施策の布石となるメッセージを考えます。そのためには、まずどういうメッセージが良いかを考え、会社の方向性を確認します。その方向性とメッセージがつながっているかを検証した上で、どんな項目をどのように分析するのが適切かという仮説を立てます。実際にデータを集めて集計し、仮説の正しさを検証します。 このプロセスを通じて、有効と感じた施策や取り組みを数値的な裏付けをもとに発表し、来期の施策に活かしていくことが重要です。

データ・アナリティクス入門

問題を見極める力が成長を促す

問題の本質は何か? 最初に重要なのは、「What(何が問題か)」をしっかりと見極めることです。具体的なデータを丁寧に集め、それを基に問題を特定することが肝心です。そして、問題を見つけた後は、その問題がなぜ起きているのか(Why)をよく考える必要があります。よくありがちなのは、「何が問題か(Where)」を見つけただけで、「どう解決するか(How)」に飛びついてしまい、WhatとWhyを飛ばしてしまうことです。これでは、解決策が不十分になることが多くなります。 直感に頼りすぎていない? このような経験から、私はしばしばWhatとWhyを深く考えず、直感に頼って行動しがちだと反省しています。たとえ直感的に問題や解決策が思い浮かぶとしても、しっかりと事実と原因を見極めた上で、効果的なHowを導き出すことを意識します。 データ収集と原因分析のステップ まずは、対象としている状況に関連するデータをしっかりと集め、実際にどこが理想的な姿と比べて差が大きいのかを検討します。次に、その問題の原因が何であるかや、その問題がどのような影響を及ぼすのかを考えます。原因を明確にし、その問題をどのように解決するかを考えることが重要です。このプロセスを日々の中で繰り返すことで、自分自身の考え方を確立していきます。

クリティカルシンキング入門

「文章で相手の時間を大切にする秘訣」

効果的な文章作成のコツとは? 下記の4点が印象に残りました。 - 文章を作成する際、主語と述語を明確にすること(日本語は主語を省略しがちなので、その意識を持つ)。 - 一文を長くしすぎないこと。 - 伝える相手にとってどの理由を伝えることが効果的かを考えて文章を構成する。 - 主張を支える複数の理由をピラミッド構造で考える。文章を書き出す前に、結論を支える要素を複数考えてから文章化する。 リモートワーク時の時間効率化は? リモート主体でテキストコミュニケーションが多いため、連絡や報告、相談や承認、調整など文章を書く機会が普段から非常に多いです。自分自身の文章の作成だけでなく、受け取る相手が読み解くための時間を労働時間に換算すると、大きなロスが発生している可能性に気付きました。相手の時間を不用意に奪わないためにも、今回の学びをもとに文章の構成や作成時間を改善したいと思います。 一度で済むコミュニケーションを目指すには? テキストでの相談や依頼、連絡事項のやりとりについて、基本的に一度のやりとりで完結することを目標に文章を作ります。ベストはスタンプの反応一つで完結することです。もしやりとりが2回以上発生する場合、自分も相手も時間をロスしていると考え、文章をリライトしてみる必要があります。

データ・アナリティクス入門

仮説が拓くアイデアの軌跡

結論仮説の根拠は? 仮説には「結論の仮説」と「問題解決の仮説(What/Where/Why/How)」があることを理解しました。結論の仮説に求められるフレームワークは多岐にわたると感じ、例えば4Pや3Cといった手法もその一例であると捉えました。ミュージックスクールの事例からは、結論の仮説を明確に導き出すプロセスが示されていたと理解しています。 データ収集の意図は? また、これまで目の前や世の中にある既存のデータを活用して分析する習慣がありましたが、今回新たにアンケートなどでデータを収集する視点も得ることができました。今後は、どちらの仮説を導くのか、結論の仮説か問題解決の仮説かを意識することから始めていこうと考えています。 結論強化はどうする? 直近では問題解決の仮説を考える機会は多かったものの、結論の仮説を出す場面が少なかったため、あえてフレームワークを意識して結論の仮説を構築する取り組みを強化したいと思います。 事例から何を学ぶ? 企画の提案に際しては、過去のデータのみから示唆を得るのではなく、競合や他社の事例などもフレームワークを活用し、結論の仮説を導き出せるよう努めます。まずは3C分析を意識して活用し、自社だけでなく市場や競合の動向も幅広くインプットすることを目指しています。

デザイン思考入門

スピードでカタチに!学びの実験

前職はなぜ意義ある? 前職ではSEとしてプロトタイプを作成し、フィードバックを受け取るサイクルを繰り返していたことを思い出しました。現在の業務では同じような機会は少ないですが、その経験を活かし、使用中のツールの改修や新規作成に取り入れていきたいと考えています。また、モノ作りのみならず、業務フローの改善にも生かす意欲があります。 フィードバックの鍵は? 実践までは至っていませんが、実践演習を通して、まずアイデアを形にし、ユーザーからのフィードバックを受けるそのプロセスの繰り返しが、よりユーザーが求めるものを作り出す鍵であると感じました。さらに、プロトタイプの種類によって得られるフィードバックが異なるため、何を目的にするのか、現在のフェーズはどこにあるのかを踏まえた上で、プロトタイプの作成と検証を進めることが重要だと考えています。 スピードはなぜ大切? とにかく、形にすること、そしてスピードが大切であると実感しています。形にすることで自分の考えが整理され、ユーザーやメンバーからコメントやフィードバックを得やすい状況が生まれます。そのサイクルをスピーディーに回すことが成果につながると感じました。また、ユーザーテスト前に評価基準を設定しておくことで、課題を見失わない工夫も大切だと実感しました。

マーケティング入門

顧客視点で引き出す満足感の秘訣

顧客ニーズをどう理解する? マーケティングとは、顧客のニーズを理解し、それに基づいた満足を創造する仕組みを構築することです。顧客思考が重要なのは、顧客が本当に欲しいと感じる魅力的な商品やサービスでなければ、売上を確保できず、結果として報酬を得ることができないからです。 幅広い「顧客」とは? ここで「顧客」とは、広義には顧客、同僚、上司など、関わる全ての人を指します。相手の立場に立って物事を考え、行動を起こすことで、彼らを満足させられるようにすることが求められます。 マーケティング思考の活用法 具体的には、顧客や上司へのプレゼンテーションや提案において、相手が満足できるものを作り出すためにマーケティング思考を活用します。また、社内のミーティングや議論においても、マーケティングの論理構造を活用し、相手のニーズを正しく把握することが重要です。 効果的なプレゼンを目指すには? 相手の立場に立ってニーズを理解することから始め、魅力的なプレゼンができるよう日々スキルを向上させる必要があります。そして、相手に納得感を持たせるために、論理構造をしっかりと学ぶことも大切です。最後に、自分自身の強みを伸ばし、他者とは異なる魅力的な人材となることで、自身を強力な武器として持つことができます。

データ・アナリティクス入門

データが照らす学びの軌跡

データ比較の意味は? データの比較を通して、その意味合いを見出す手法として、数字に集約する方法とビジュアル化する方法の2つのアプローチがあることを学びました。 代表値の選び方は? 数字に集約する手法では、まず代表値に着目します。代表値としては、単純平均、加重平均、幾何平均、さらには中央値が挙げられます。また、データのばらつきを評価するためには標準偏差を利用するのが有用です。どの手法を採用するかは、単に数値を並べるのではなく、各数値が持つ意味合いを十分に考慮した上で、目的に見合った適切な評価方法を選択することが重要です。 評価手法は何だろ? 成長率や進捗率の評価では、場合によっては幾何平均が適していることもあります。ただし、実際の業務においては、単純平均や標準偏差による評価が一般的に用いられるケースが多いです。評価の目的やデータの意味合いによっては、中央値や幾何平均も選択肢に入れて、適切な評価手法を考慮する必要があります。 グラフ選びはどうする? また、データのビジュアル化にあたっても、まずその目的を明確にし、適したグラフなどの表現方法を検討することが大切です。目的に合わせたデータの加工や表示の手法を選ぶことで、情報をより具体的かつ分かりやすく伝えることができると実感しました。

戦略思考入門

営業成績を劇的に上げる習熟効果の活用法

経済効果をどう活用する? 規模の経済や習熟効果、範囲の経済性について、今まで理論としては知らなかったものの、実感としては効果があると感じていました。今回、それが具体的な言葉として明確になったことで理解が深まりました。しかし、これらの効果を自分たちの事業に適用する際には、慎重に吟味して使わなければなりません。そうでなければ、逆効果になる可能性もあることを学びました。 習熟効果を最大限に生かすには? 自分の仕事に置き換えてみると、習熟効果が効果的に活用できるのではないかと思います。各営業パーソンが経験を積むことで、同じ成果を出すまでの効率が向上します。しかし、ある程度経験を積むと習熟曲線が緩やかになるため、経験の浅い人に早く経験を積ませるデザインが必要だと感じました。 実践的経験を得る方法は? 相談のトレーニングは多く行えますが、実際の顧客対応は別の経験です。経験が浅い人が一人で対応するのは難しいことが多いです。そのため、私自身の顧客との相談に同席させたり、経験豊富な人材と共に相談の場に入る機会を増やすことが有効だと考えています。最終的には本人が主導で相談を進めてもらうことが理想ですが、それだけでは習熟効果を高めるには不十分と思われるため、より実践に近い形での経験を積ませたいと思います。

「出す」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right