データ・アナリティクス入門

4ステップで拓く新たな可能性

問題解決の4ステップは? この講義では、ビジネスにおける問題解決の基本となる4つのステップ―What(問題の明確化)、Where(問題箇所の特定)、Why(原因の分析)、How(解決策の立案)―を学びました。現状とあるべき姿とのギャップを意識することで、問題そのものを正しく捉え、解決に向けた具体的なアプローチが可能になるという点が印象的でした。 どうして進化を狙う? また、単にマイナスの状態を回復させるだけではなく、既に正常な状態からさらに進化させ、より良い結果を生み出す方法にも目を向ける大切さを理解しました。この学びは、事業性評価や臨床試験の失敗理由の考察、交渉時に相手を説得する際の有効なツールとしても応用できると感じています。 数値情報はどう活用? さらに、データ解析の手法―例えばピボットテーブルの活用―を通じて、日常の業務や意思決定に具体的な数値情報を取り入れる方法を学び、実践的なスキルの向上を目指していきたいと考えています。

戦略思考入門

効率化で時間と売上を生み出す秘訣

経営戦略で何が変わったのか? 現在の会社では、経営戦略の活用により無駄な作業が著しく減ったと感じます。以前は同じ内容を複数の書類に記載するなどの二度手間が多かったですが、今は減らせる作業をどんどん減らしていっています。それにより、顧客への準備時間が確保でき、売上にもつながっています。 仕組み化のメリットとは? 仕組化することも有効だと考えます。例えば、講演会の開催においては、個人によって準備や開催の方法、フォローの取組が様々ですが、最も効率的な方法をチームで検討して仕組化することで、抜け漏れの確認が容易になります。そして、全員が最も効率的な方法を実行できるようになるメリットがあります。 どう仕組み化を進める? この仕組み化を実際に試してみようと思います。まずは、チームの個々の講演会のやり方を聴取し、最短で効果的な方法を抽出します。その後、数人で実施し、検証しながらブラッシュアップしていくことで、最終的に仕組化したいと考えています。

クリティカルシンキング入門

振り返りが未来を変えるヒント

講義の振り返りはどう進める? ライブ授業はこれまでの講座の総復習のような内容でしたが、全体の約8割を思い出すのに苦労しました。講義後に、ただその場の学びとして終わってしまったことを反省しています。 目標設定は本当に効果的? 一度にすべてを実践しても定着しないと痛感したため、今後は1日の始まりにその日の目標を設定し、少しずつ着実に実践していくことを意識します。 問いの共有は十分でしょうか? また、問いと答え、すなわち主張と根拠を考える際は、まず自分がどのような問いを持っているかを明確にしたいと思います。そして、メンバーやお客様、上司が何を問いにしているのかを共有し、問いの統一を図ることが大切だと感じています。 指示の伝達は問題ない? プロジェクト内でエンジニアへ指示する際には、伝え方ひとつで重大なミスやスケジュールの遅延を招く可能性があるため、ピラミッドストラクチャーを活用し、正確に意図が伝わるよう常に注意していきたいです。

データ・アナリティクス入門

説得力を生む加重平均の真実

分析視点は何が肝心? 今回の学習では、分析において比較する5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)を意識することの重要性を再認識しました。また、平均値として単純平均、加重平均、幾何平均、中央値といった代表値の違いについて学び、特に加重平均と幾何平均が今後の業務で役立ちそうだと感じました。 平均選択のポイントは? これまで実務では単純平均を使用してきましたが、利益が低下している部分に焦点を当てるためには、加重平均を取り入れることで事業の取捨選択がより明確になると気づきました。加重平均を用いれば、経営陣に現状の課題を整理し、改善提案を行う際に説得力が増すと考えています。 幾何平均はどう見る? 一方、幾何平均は計算が複雑なため、現状では取り扱いが難しい印象を持ちました。しかし、来年以降の利益率成長率を算出する際に有用な指標となる可能性があり、将来的には利益予測の精度向上に寄与できるのではないかと期待しています。

クリティカルシンキング入門

チームの課題発見と解決の秘訣

何を考えるべき? 考えを始める前に、何を考えるべきか、またどんな問い(イシュー)に答えを出すべきかを明確にすることが重要です。問いを具体化し、打ち合わせ中は常にその問いを意識することで、間違った答えや見当違いな答えを避けられます。 進捗はどう把握? 業務の取り組み状況を把握する際には、進んでいるチームと進んでいないチームを比較する必要がありますが、これは単に取り組み状況を定量的に確認するだけでなく、定性的にも捉えることが求められます。特に、取り組みが進まない理由を探る際には、店舗の大きさ、年齢、入社時期など、さまざまな角度から深く分析することが肝要です。 次年度方針はどう? 現在、次年度の方針を策定中ですが、この策定には今年度立てた目標に対する達成状況が影響します。目標の再設定や目標達成のための研修、会議の内容など、過不足を様々な角度からデータを分析し、1年後には自身の成長が実感できるような方針を策定したいと考えています。

戦略思考入門

思考の幅を広げる6週間の学び

どんな学びがあった? この6週間を振り返ると、ライブ授業を通じて多くの学びを得ることができました。ライブ授業だけでなく、毎週の演習や任意で視聴する動画も非常に有益でした。特に、クリティカルシンキングで得た学びを通じて、自分の思考が偏ることを前提に、状況を冷静に俯瞰して適切な対策を打つことの重要性を理解しました。 業務でどう生かす? 私自身の業務では、会社の戦略を立てることはありませんが、組織の目標設定や日常のトラブル対応で、方向性や対応方針を決定する際に、今回学んだことを活かせると感じています。正しい状況判断と最適な対応策を導き出すために、この学びは非常に役立つと考えています。 どう実行できる? 業務の中で方向性や対応方針を検討する際には、即断せず、まず時間を取って状況を分析し、先を見据えたシナリオを意識して考えるようにしています。そのように時間を確保することで、これを習慣化し、学びの定着に向けた訓練を続けたいと思っています。

データ・アナリティクス入門

重みを知れば仕事が変わる

各平均値はどう選ぶ? 加重平均は以前から活用していましたが、その際は重み付けの解釈に重点を置いていました。改めて考えると、単純平均、加重平均、幾何平均、中央値といった各種の平均値は目的に応じて使い分けるべきですが、実際の業務では加重平均に偏りがちです。また、見える化の手法としても円グラフやヒストグラムが多用され、ばらつきは主に標準偏差の数値で把握しています。 業務量の重みをどう見る? 業務量の重み付けについては、データから抽出することで一層理解が深まり、数値化により説得力のある説明へとつながると感じています。今後も業務要件を数値から読み解く手法を積極的に採用していきたいです。 数値が語る本質は? さらに、業務量のヒアリング調査結果やシステム利用率など、数値のインパクトは重要な判断材料となります。これらを自分の業務タスクに組み込み、インプットデータのマネジメントを計画の初期段階から取り入れていくことが今後の課題だと考えています。

クリティカルシンキング入門

データ分析で見つける、次の一手

分析の進め方はどう? 目の前の数字だけで判断しがちですが、一歩踏み込んで分析することで、より詳細で解像度の高い状況にたどり着ける可能性があることが分かりました。情報の収集とその情報の分析に工夫を加えることの重要性を学びました。 データ活用に自信は? 問い合わせ者データや来場者データ、購入者データなど、さまざまなデータを保有していますが、これらを有効に活用できていないかもしれないという良い意味での疑念を持ちました。それぞれのデータを分析して歩留まりの数や率を向上させるため、具体的な施策を行っていますが、より効果的な施策を実現するために、各段階での分析作業を実施する必要があると感じました。 改善点は見えてる? アンケートデータの分析(分解)を通じて、改善点を効果的に導き出すことができそうです。実施予定の施策の効率や効果性を向上させることができれば、得られる成果を今より大きなものに変えられるかもしれないと実感しました。

マーケティング入門

顧客の心を読むマーケティングの極意

顧客視点で学ぶ意義とは? 実際の事例を用いて顧客視点でヒット商品を考えることは、とても興味深い経験でした。これまであまり深く考えたことがなかったのですが、顧客視点で理由を考えることで、その判断が確かな理由に基づいていることが分かりました。多くの事例を学ぶことがマーケティングを理解する最短の方法だと感じました。 ニーズを引き出す方法とは? 製品の価値を最大化するためには、直接取引する顧客とその先にいるエンドユーザーの真のニーズをそれぞれ理解し、潜在ニーズを引き出していくことが重要です。そのために、カスタマージャーニーを徹底して活用していきたいと考えています。 潜在ニーズに焦点を当てる理由 カスタマージャーニーを元に顧客の真のニーズを理解し、ペインポイントを探りたいと思います。特に潜在ニーズにフォーカスし、それを引き出すための話法や質問力を鍛えることが必要です。また、常に顧客視点を軸に自社製品を捉えることが重要だと感じました。

クリティカルシンキング入門

数字を超えた視点の冒険

数字の見方は本当か? 数字をただ見るのではなく、視覚化やグラフ化することで、より多角的な意味を見出すことができると実感しました。また、MECEの基本的な考え方についても理解が深まり、モレやダブりを意識することの重要性を学びました。「本当にそうか?」と問いかけるプロセスが、短絡的な結論を避ける上で大切だと考えます。 疾患領域はどう選ぶ? 新規薬剤や新たな事業領域の開発を考える際、まずは対象となる疾患領域を絞り込む必要があります。さらに、その絞り込んだ後のポピュレーションや、疾患の重篤度、患者数、事業性、競合環境など、さまざまな切り口からニーズの有無を検証することが求められます。 課題分解は的確か? また、課題をどのように分解し、分解が適切に行われているかを意識することも重要です。一人で考え込むのではなく、メンバー間で様々な視点を共有し、切り口のアイデアやモレ・ダブりの有無を話し合いながら進めていくことが効果的だと感じました。

データ・アナリティクス入門

ひらめき増幅!着想習慣のすすめ

仮説を考える時間は? 仮説を考える際に、少し時間をかけることの重要性を学びました。日常的には、即時性を重視してしまいがちで、その結果、ひと工夫加えた着想や広がりを見逃してしまうことがあると感じます。 フレームワークの効果は? また、3Cや4Pといったマーケティングのフレームワークを、着想の起点として改めて見直すことも大切だと思いました。こうしたフレームワークを活用することで、視野が広がり、より深い洞察を得ることができると実感しています。 良い思考の秘訣は? 良い思考を引き出すためには、単にひらめきを頼るのではなく、一定の時間をかける意識を持つことが必要です。この意識を習慣化し、継続的に自分自身の着想の質を高めるために、定期的なリマインドを行うことが効果的だと考えています。 次の具体策は? そこで、今後「仮説」の質を高めるためにできること、また必要なことは何か、具体的な行動や工夫について考えていきたいと思います。

データ・アナリティクス入門

悩みを力に変える仮説の魔法

どんな仮説を作る? 普段は問題意識や論点の着目はできるものの、その先の進め方に悩むことがあり、課題から仮説につなげるのに苦手意識を抱いていました。しかし、3Cや4Pを活用することで仮説の立て方を理解でき、今後はより具体性のある仮説を構築できるよう努めたいと感じています。 新たなデータはどう? また、これまでは既存のデータだけで答えを導く方法に頼っていたため、仮説の裏付けとして新たなデータを収集する発想がなかったことに気づかされました。今後は情報が偏らないよう注意しながら、必要なデータを積極的に取りにいく姿勢を身につけたいと思います。 どう説得力を出す? 売上に関しても、なぜこのような結果になったのか説明が十分でなかったため、まずは結論を支える仮説を立て、その裏付けとなるデータを取りに行くことで、より説得力のある説明ができると感じました。普段から問題意識を持つことで仮説の具体性が増し、分析の視野が広がると実感しています。

「出す」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right