データ・アナリティクス入門

平均に隠されたデータの真実

代表値の意味は? データを理解する際、代表値の考え方が基本であると学びました。代表値には単純平均、加重平均、幾何平均、中央値などがあり、たとえ二つの集団で平均値が同じでも、ばらつきの度合いによって集団の実態は大きく異なることがわかります。ばらつきは標準偏差という指標で表され、また、グラフを用いてデータを視覚化することで、説得力が増すことも学びました。 報告書のポイントは? 報告書にデータやグラフを用いる際には、より意味のある情報を見出すことが重要です。平均値だけでは集団の性質を十分に理解できないため、ばらつきなど他の要素も加味し、「本当にそう言えるのか?」と多角的に考える必要があると感じました。 分析目的は何? そのため、まず何のための分析なのか、その目的を明確にすることが大切です。次に、必要なデータを特定し、信頼できる情報源から取得すること。そして、代表値や標準偏差をどう活用すれば集団の性質が理解できるのかを考慮しながら、データを適切に扱いたいと思います。

アカウンティング入門

企業分析で未来を読む、PL活用法

業界PLで何を理解できたか? 事業の構造や提供価値に応じて、費用のかかる部分が異なるため、利益を生み出す仕組みも変わることが理解できました。異なる業界のPLを見ることで、その業界の特徴を理解することができ、また、同業他社のPLを確認することで、各社がどこに費用をかけているのかが分かり、今後の動向を予測できると考えました。 競合他社の動向をどう把握する? 経営企画として競合他社の動向を把握する際には、PLを活用し、どこにどれだけの費用をかけているのかを分析します。また、単年度ではなく複数年にわたる変化を追うことで、今後の動向を予測するのに役立てたいと思います。 自社PLの整理で見える課題は? 具体的には、競合他社の過去3年間のPLをまとめ、どのような予測が可能かを整理します。そして、その整理した内容が直近の動向と一致しているかどうかを確認します。また、自社のPLについても整理を行い、課題がどこにあるのか、そして利益を生み出すために何が必要なのかを考えたいと思います。

マーケティング入門

STPで商品価値が変わる!?学びの実感

STP再評価だけで成長? 企業の事例を通して学んだことで、商品自体を変更しなくてもSTPを再評価するだけで、ビジネスを成長させることができると理解が深まりました。また、ポジショニングを検討する際には、自社視点ではなく顧客視点でポイントを絞って売り出すことの重要性を学びました。 コンセプト調査の重要性とは? コンセプト調査を行った際の結果分析時に、特にSTPの重要性を感じました。STPをしっかりと定めることで、その後のプロモーションや施策に一貫性を持たせることができると確信しました。また、新商品の企画を考える際には、ポジショニングマップを作成し、差別化ができているかの確認を行いたいと思います。 自社の強みをどう活かす? さらに、自社の既存商品をSTPにあてはめて分析することで、自社の強みや他社との差別性を理解できました。こうして理解した自社の強みを書き出し、顧客視点でも強みかどうかを再確認し、複数の強みをかけ合わせながら新商品の企画を構築していきたいと考えています。

データ・アナリティクス入門

具体を引き出す対話の魔法

目的をどう明確化? 分析の目的を明確にすることの重要性を実感しました。データを活用する相手がどのような目的で情報を求めているのか、コミュニケーションを通して具体的に確認する必要があります。しかし、実際に会話をすると、目的が漠然としていたり、具体的な内容が伝えられないケースが多く見受けられました。そのため、抽象的な要素を具体的な内容として引き出すヒアリング力が非常に重要だと感じています。この過程で、仮説設定や比較対象の選定がより明確になり、全体の分析基準がしっかりと定まると考えます。 営業データは何を示す? また、営業活動においては、提供するデータがますます重要になっています。特に、自社製品の導入理由を明確に説明することが求められる中、競合他社との比較において自社製品を選ぶ根拠を明確なデータで示すことが必要です。営業と意見を共有しながら、データ活用の目的を具体的に明確化し、客観的な視点を保った説得力のあるデータ提供を行うことで、導入率の向上につなげたいと考えています。

リーダーシップ・キャリアビジョン入門

あなたらしさを引き出す未来への道

個々に合わせた指導は? 若手の人材育成に、これまでの一律なアプローチではなく、個々に合わせた目標設定が必要だと感じています。これまでは同じ話やワークを提供していたため、ゴールまでの道筋が曖昧になっていました。今後は、各自が目指す人物像や理想の姿を明確にし、その実現のために個別の指導を行いたいと考えています。また、前提となる環境要因に基づく情報提供が、やる気の向上にもつながると期待しています。 支援手法はどう変わる? さらに、メンバーに合わせた指示型、参加型、支援型、達成志向型のワークを取り入れ、全体ミーティングで共有することで、メンバー間の相互理解を深める計画です。異なるアプローチを柔軟に使い分けることで、それぞれの適性や経験を活かした支援が可能になると考えています。 業務配分のコツは? また、日常業務においては、どの業務内容をどのレベルのメンバーに割り当てるかを検討し、各自の目標達成への道筋を具体的に示すことで、メンバーの自立を促していきたいと思います。

クリティカルシンキング入門

思考の癖を見直し、多角的視点を鍛える

自分自身の思考を問い直す 人は思考に偏りがあり、経験に基づいた発想に寄りがちな習性があることに気づきました。そのため、自分自身の思考の偏りを自覚し、「3つの視」を活用して違う見方がないか問い続けることが重要だと感じました。また、瞬発力が求められる場面と持久力が求められる場面のそれぞれに応じた対応力を身に着ける必要があると理解しました。 課題解決に役立つ気づきとは? 業務の改善や改革を企画・検討する際には、課題の本質を見極めるためにこの気づきを活用したいと考えています。日々の会議でも、自分の意見に偏りがあることを意識し、広い視点を持って他の見方がないか探りながら発言をブラッシュアップしていきたいと思います。 ロジックツリーで見解を深める 企画検討の際には、ステークホルダーごとの視点から物事を多角的に見ることを意識的に行い、ロジックツリーを使って分解し整理します。また、会議では経験に基づく反射的な回答は避け、問いかけの本質を見極めた上で、意見を出すことを心がけます。

データ・アナリティクス入門

比較で見つける日常データの宝石

データの隠れた意味は? 「分析は比較なり」という講師の言葉に、これまでの自分のデータに対する見方を改める衝撃を受けました。単に手元にあるデータだけでは、平均値や統計情報といった基準を算出することができず、その中に秘められた情報を読み解く重要性を再認識する機会となりました。 数字以外も活かせる? また、データ分析と言えば数字を思い描くことが多いですが、文字列などで表現される資料もまたデータであると教わりました。間接部門で働く中で、これまでデータに対して多少なりとも距離を感じていた私にとって、まずは日常の中で身近に存在するデータを取りこぼさず活用することの必要性を実感しました。 管理と復習は十分? 具体的には、毎日、毎週、毎月の使用単位で見落としがないかデータをチェックすること、一元的な保管場所を確保してデータの集計状況を整えることが挙げられます。迷ったときは今回の学びを振り返り、復習を繰り返すことで「データとは何か」を体で覚えていくことが大切だと感じました。

リーダーシップ・キャリアビジョン入門

知識を実践に変える日々の挑戦

なぜ行動が大切? 振り返ることの大切さを改めて実感しました。リーダーシップやキャリアビジョンの講義では、単に知識を得るだけでなく、実際に行動に移すことの重要性を学びました。講義の内容を覚えているだけでは、せっかくの学びが無駄になってしまうと感じました。 どう原則を実践? また、リーダーシップやキャリアビジョン自体は、シンプルな原則に基づいたものだと実感しました。その原則を日々の業務に継続して落とし込むことが、最も大きな課題だと思います。たとえ部下を持っていなくても、業務上の困難に直面した際には、今回の講座で得た学びを思い出すことで、解決へのヒントが見つかるのではないかと考えています。 何故記録するのか? この学びを忘れないために、普段持ち歩く手帳に講座で学んだ内容や気付きを記録することにしました。業務でうまくいかなかった経験や、現状の課題に直面した際、当時何を学んだのか、そこから今に繋がるアイデアがないかを自分に問いかけるようにしていこうと思います。

アカウンティング入門

P/Lを味方に最高の戦略を描こう

P/Lの役割とは? P/Lの主な項目には5つの利益があり、これが企業の収益性を示す重要な財務報告書であることを理解できました。利益を出すためには、自社のコンセプトを守りながら心がぶれないようにすることが非常に重要であると学び、印象に残りました。今後もさらに学びを深めていきたいと思います。 どの部門が利益を? P/Lを活用して、どの部門が利益を生み業績を上げて会社の利益に貢献しているのかを読み解くことができます。一方で、どこにコストがかかっているのか、どの部門に改善の余地があるのかを把握し、部門ごとの目標設定をすることで効率的な戦略を立てられると思います。 P/Lを活用した判断材料とは? 今回の学習を通じてP/Lを理解できたので、自分が担当する新規プロジェクトや設備投資の判断材料としてP/Lを活用していきたいです。収益性や費用対効果を評価しながら、資金不足や借入金の返済負担など投資リスクを最小限に抑えつつ、設備投資を進められるようにしたいと考えています。

データ・アナリティクス入門

数字が語る学びの秘話

代表値の使い方は? 代表値の計算方法として、単純平均、加重平均、幾何平均、中央値のアプローチがあることを再確認しました。日常の業務では状況に応じて使い分けているものの、特に幾何平均は実際に計算する経験がなく、大変勉強になりました。また、データのばらつきを捉えるための標準偏差を使った比較も初めて試み、今後の分析に役立てたいと感じました。 分析結果はどう活かす? 研修成績やサーベイ結果の推移やばらつきを把握し、傾向や特徴を見出すために、今回学んだ代表値の計算方法やビジュアライゼーションが非常に有効だと考えます。まずは、データを確認する前に、点数が上昇している場合と下降している場合の仮説を立て、その上で属性ごとに単純平均を用いて比較を行います。さらに、人事制度などとの関連付けを行う際には、特定の部署の比重を増やす加重平均や、前々回分のデータを反映した幾何平均を導入することで、目的に合った多角的なアプローチを実現し、仮説の検証や次の分析ステップへとつなげていきます。

データ・アナリティクス入門

自分の視点で挑む数字の世界

数字の裏を見る? 数字をただ眺めるだけでなく、何を調べたいのか、どの点が重要かを事前に考える習慣が身についたと感じています。事前にどのようなデータが必要か、どんな情報がありそうかを予測し、仮説を立てることの大切さを、実際の分析を通じて実感できました。 売上の謎は? また、売上の上昇や下降といった大枠だけを把握した後、次のステップとして自ら仮説を立て、複数のデータを組み合わせて検証する練習にも取り組んでいます。データ分析専門のチームが示す資料をそのまま受け入れるのではなく、自己の視点でデータを比較検討することに注力しています。 実践の手順は? 具体的には、以下の手順で実践しています: ① 週明けに発表される週次予約情報や売上実績を前週と比較し、自分なりの考察を深める。 ② 得たデータを企画書に盛り込み、提出する。 ③ これらの実践にあたり、必要なデータの提供をデータ分析チームに依頼してみる。 これらの取り組みを通じ、分析力の向上を実感できています。

データ・アナリティクス入門

データと仮説で切り拓く未来

原因は何でしょう? 問題を解決するためには、原因をプロセスごとに分解して明らかにする方法が効果的だと実感しました。広告にかかる費用と表示回数だけで費用対効果を計算しても、課題解決には至りません。しかし、クリック数や申し込み数といったデータを加えて各割合を算出することで、具体的な解決策のヒントを得ることができました。 A/Bテストはどう? また、業務では主に定量分析や可視化を中心に行っているため、これまで触れる機会の少なかったwebマーケティングで活用されるA/Bテストについて学べたことは非常に新鮮でした。 仮説、どう作る? さらに、日々の業務でデータ分析や問題解決を行う際、どうしても過去の経験や周囲の意見に基づくストーリーに頼ってしまい、データ活用が十分にできていなかったことに気付きました。今後は、「What」「Where」「Why」「How」の各ステップや様々なフレームワークを活用した仮説の立案を取り入れ、より効果的な解決策を模索していきたいと思います。

「出す」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right