アカウンティング入門

学びで極める損益の秘密

利益分析ってどう? 損益計算書は、売上総利益から当期純利益までの5つの利益項目で構成されており、各項目の意味や相互のつながりを理解することが重要です。例えば、経常利益が黒字であっても、特別損失の影響で最終的な当期純利益が赤字になる場合があるため、個々の利益の中身に注目する必要があります。また、売上高については単年度の数字だけでなく、過去の推移と比較することで、その変化の背景や要因を読み解く視点が求められます。各利益の数値は、過去との比較や同業他社との水準比較を行うことで、より多角的な収益性の判断に役立ちます。 価値をどう守る? 儲けを考える際には、やみくもに費用を削減するのではなく、自社が大切にしている価値を見極めることが重要です。実務では、具体的な事例に基づいてPDCAサイクルを回すことで、業務改善に結びつけることができると感じました。今後は、日々の業務においてどの指標に注目すれば改善につながるかをより一層意識していきたいと思います。 利益の段階って? たとえば、利益の各段階、特に営業利益や経常利益に影響を及ぼす業務を把握することで、財務的観点から改善すべき業務の優先順位を判断できます。また、複数月や前年同月との比較を心がけることで、単なる「売上」や「請求件数」の数字だけでなく、その意味や背景を読み取る視点が養われます。 黒字と赤字は何で? さらに、経常利益まで黒字でありながら純利益が赤字となる背景を理解しておくと、上司や関連部署との会話時に説得力が増し、経営層や営業部門との議論の際にも信頼感が向上します。KPIの設定や改善レポート作成の際に、損益計算書のどの段階に関係しているかを意識することで、より成果に直結する指標設計が可能になると感じます。 比較で何が分かる? また、同業他社との比較を通じて自社の利益水準や費用構造の違いを把握することで、業務効率の向上やコスト構造の改善につながるという点も、非常に参考になりました。

アカウンティング入門

経営健全性を筋肉質で学ぶ企業分析の魅力

視覚的に経営を理解する方法とは? 内容的にはすでに学んだことが多かったが、他の学習者も書いているように「体の大きさ」を使った例がとても分かりやすかった。「骨格や筋肉」を純資産、「脂肪」を負債とし、純資産の割合が高いことを「筋肉質」と表現するのは、会社の経営の健全性を視覚的に理解する助けとなった。前回学んだ売上高と各利益の違いからも会社の戦略やビジネスモデルを把握できたが、企業の全体像や経営の健全性を具体的にイメージできるようになったのは大きな進展だった。 貸借対照表のストーリー理解法 自社の貸借対照表もまた、ストーリー仕立てで理解することが有効だと気付いた。具体的には、各拠点の経営状況を取締役会での報告に基づいて把握し、今後の建て替え業務などで貸借対照表がどのように変化するかを観察することが有益だと思う。 同業他社との比較で学ぶ 同業他社の貸借対照表を通じて企業規模や戦略を理解することの重要性も感じた。特に、同じ業界内での比較を通じて規模感や経営戦略の違いを学ぶのに役立つだろう。 異業種のビジネスモデル理解の重要性 さらに、他の業界の貸借対照表を見る際には、そのビジネスモデルや資産状況を理解することが重要だと感じた。実際、鉄道会社のように固定資産が多い業界のビジネスモデルをイメージしながら、数字を読み取る練習を続けたい。また、経理の数字に馴染みがない中で、一般的な負債額や規模感を身につけることが事業管理や開発に携わる上で役立つと感じる。 経営者視点での貸借対照表の見方 取締役会の議事録や音声を元に会社の経営状態を理解し、貸借対照表を経営者の視点で見るスキルも重要だと思う。他社の情報を見る際には、まずその会社のビジネスモデルをイメージし、そのイメージを持って貸借対照表を確認。その後、HP上の招集通知などに記載された経営状況の説明を読み込み、具体的なストーリーと数字を結びつけて理解するプロセスが有効であると感じた。

クリティカルシンキング入門

情報分解のスキルで未来が変わる!

情報の分解のポイントとは? 今回の学習では、情報の分解の仕方を学びました。大きくポイントが4つありました。 1. 受け取った情報を加工し、知りたい情報が読み取れるように加工をする 2. 情報を分解するときに、機械的に加工するのではなく、知りたい情報が読み取れるように分解する 3. 分解の切り口を1つだけにするのではなく、複数の切り口で分解をする 4. 分割するときにMECE(Mutually Exclusive, Collectively Exhaustive)に分解する 特に学びを得た切り口は? 今回の学習では、特に3の項目が大きな学びになりました。情報の違いを探すときに、特定の切り口で分けて数値として違いが出ていても、もう一歩別の切り口で分解すると違う答えが見えることに気づきました。普段意識できていなかったこの点を「本当にそうか?」と疑うことは大事だと感じました。 また、「情報の全体を定義してから分割する」ということも、網羅的に情報を分割する上では重要だと思います。 具体的な活用シーンは? 1. 受領したデータを加工し、社内の打ち合わせやお客様への発表などで視覚的にわかりやすい情報に整理して表示する場面 2. 展示会の来場者アンケートを作成する場面 3. 社内の作業や資料のレビューの際に、抜け漏れがないかを確認する場面 結論をどう検証する? これらをいくつかの場面に適用してみようと思います。 1. グラフ化などをするときに、情報の分割前に切り口を考え、その後もう一度考えた切り口を振り返り、出した結論と比較したいと思います。 2. 昨年のアンケート作成時には、情報収集が難しく、網羅性のないアンケートになってしまっていました。今後はMECEを意識して項目を作成したいと思います。 3. レビューを頼まれた際、気になる部分しかコメントできていなかったので、情報の抜け漏れがないかを意識して確認していきたいです。

データ・アナリティクス入門

仮説構築のフレームワークで実力アップ

仮説構築で何を優先すべき? 仮説構築のポイントについて学んだことは、以下の通りです。 まず、仮説構築では複数の仮説を出すことが重要です。3Cや4Pといったフレームワークを活用し、網羅性を持たせることが求められます。決め打ちにしない姿勢も大切です。 次に、仮説を絞り込むための基準としては、具体的なデータや根拠が必要です。たとえば、SNSのプロモーションが弱いと判断する場合、その根拠を明確にする必要があります。 どのデータを用いるべき? データ取得や計測前には、指標の絞り込みが重要です。何を比較すれば仮説が立証されるのかを確認します。例えば、故障件数ではなく、1件あたりの対応時間を指標とすることが有効です。 また、比較対象のデータも集める必要があります。Aが正しいというだけでなく、BやCを否定するデータも必要です。これにより、より説得力が増します。 仮説検証の鍵とは? 仮説には「結論の仮説」と「問題解決の仮説」があり、それぞれの使い分けと違いを意識することが重要です。問題解決の仮説では、社内のシステム切り替えにおいて複数の製品候補の中から1つを選ぶ際、網羅性のある原因究明と問題箇所の特定が求められます。A製品が良いというデータだけでなく、他の製品(B, C)がダメというデータも揃えることで、Aの比較優位性を証明することができます。 フレームワーク選択の重要性 仮説検証のシミュレーションでは、まず仮説の洗い出しを行います。3Cや4Pのフレームワークが適用できるかどうかを検証し、適していない場合は他のフレームワークを検討します。 最後に、データ検証の洗い出しでは、取得可能なデータの確認と、どの指標が計測・取得すべきデータなのかを特定します。これにより、仮説の検証がスムーズに進むでしょう。 以上のポイントを踏まえて、仮説構築と検証のプロセスを実践していくことが大切だと感じました。

アカウンティング入門

カフェ事例で解く利益と価値の秘密

顧客価値はどう捉える? カフェのケーススタディでは、「顧客への価値を考える」という現業の企画・マーケティング要素が盛り込まれており、イメージがつかみやすかったです。この事例を通して、企業が提供する価値と損益計算書の読み方を意識するようになりました。 利益はどう違う? また、「利益」と一括りにすると、どこで利益が出たのか、または損失が生じたのかが分かりにくいと感じました。5種類の利益(売上総利益、営業利益、経常利益、税前当期純利益、当期純利益)の違いを学ぶことで、それぞれの意味が理解できました。 複数事業の見方は? 今回の事例はカフェという単一事業のみを扱う企業に焦点を当てていますが、実際には複数の事業を展開する企業も多いのではないかと疑問に思いました。財務三表の中では、PLは基本的に企業ごとに一つですが、複数事業で構成される場合、損益計算書の見方や事業(部門)ごとのPLの存在についても気になったので、復習時に詳しく調べたいと思います。追って、各部門ごとに作成される「部門別損益計算書」が存在するとの情報も得ました。 競合と自社はどう違う? この学びは、企画立案時の事前調査や他社の分析と比較に活かしたいと考えています。企画段階では、すでに決まった予算の範囲内で進めることが多いですが、競合他社のPLを比較することで、どこで利益を生み出せそうかを意識し、費用投資を検討する視点が身につきました。同時に、競合他社とは異なる、自社ならではの提供価値を大切にしていくことも改めて認識しました。 業界特性はどう読む? 今後は、競合他社のPLの確認と比較、さらには小売や製造など異なるビジネスモデル間でのPL比較を通して、それぞれの業界特性や提供価値を考慮しながらPLを見る習慣をつけるとともに、部門別PLがある企業と、1つのPLに集約される場合との違いについても確認していきたいと考えています。

アカウンティング入門

数字で読み解く企業の秘密

財務構造はどう? 総合演習では、ZoomやNetflixの損益計算書、さらにはANAとZOZOの貸借対照表を比較することで、事業内容によりどの部分に負荷がかかり、どのような財務構造を持つのかが大きく異なることを実感しました。 費用割り当ては何が違う? ZoomとNetflixの比較では、各社のビジネスモデルの違いが費用の配分に明確な差として現れており、それぞれの事業活動をイメージしながら、どの項目にどれだけのコストがかかっているのかを俯瞰的に捉えることができ、非常に興味深かったです。 資産構成はどうなってる? また、ANAとZOZOの貸借対照表を見比べると、固定資産が全体の60%(うち有形固定資産が70%)を占める重資産型の構造と、固定資産が20%に留まり流動資産が高い軽資産型の特徴が対照的に表れていました。これにより、どのようにお金を使っているのかが明確になり、数字から企業の仕組みを読み解く面白さを改めて感じました。 月次の動向はどう? さらに、総合演習の設問9でも触れた通り、所属する企業では会計ソフトを利用して、月次ベースで損益計算書と貸借対照表を確認する取り組みを行っています。年単位の大まかな動きではなく、月ごとの変化を捉えることで経営状況をより具体的に把握し、ミクロな視点から状況を把握しようとしています。 損益計算の見取り方は? 損益計算書においては、売上、売上総利益、営業利益、経常利益、税引前当期純利益、そして当期純利益といった指標を整理し、費用の使われ方や利益構造を視覚的に理解できるよう工夫する予定です。 資金分析はどうなる? 同様に貸借対照表も、流動資産、固定資産、流動負債、固定負債、純資産に分類し、「どのようにお金を調達したのか」と「どのように使ったのか」という両面から企業の資金繰りを分析し、今後の意思決定に役立てていこうと考えています。

データ・アナリティクス入門

分析で見つけた新たな発見と気づき

比較による効果測定とは? 分析とは、比較することである。まず、分析する項目を整理し、各要素の性質や構造をはっきりさせることが重要だ。何かの効果を測りたい場合、「ある」場合と「ない」場合で比較を行い、分析対象以外の条件も整える必要がある(これは「Apple to Apple」と呼ばれる)。 データ分析の目的と仮説 データ分析を行う際には、まず目的と仮説を立てる。例えば、データ分析の目的は何で、その結果どのような状態を目指すのかを明確にすること。そして、どの項目を分析すれば目的を果たせるのか、その項目をどのようにデータ加工すれば良いのかを考え、具体的な仮説を立てることが大切だ。 適切なデータ加工と表現法 データにはその種類に応じた加工法やグラフの見せ方が必要である。割合で表現するのが適切な場合と、実数(本来の値)で表現するのが適切な場合がある。また、質的データ(数値の大小に意味がないもの)と量的データ(数値に意味があるもの)の違いを見極める必要がある。 人事部門のデータ活用法 人事部門では、健康経営やエンゲージメントに関するデータを扱い、改善に向けた施策を企画することが多い。このため、データを活用して課題解決や目標達成のためのPDCAサイクルを効果的に回せるようにすることが求められる。これまでの施策参加者がどれだけ改善したか、「参加した人の中で●●をした人はより■■だった」といった分析を行うが、このためには、参加者と不参加者の間での比較を行うことが重要だと感じている。 目的設定と議論の重要性 まずは、目的を明確にし、自分自身の思い込みや仮説に偏らず、上司やメンバーと徹底的に議論することが必要だ。次に、課題に対して目指す姿を定量的にKPIとして設定し、現状を把握する。算出するデータに定義と根拠を持ち、それを分かりやすく伝えるスキルを身に付けることも重要である。

戦略思考入門

VRIO分析で差別化戦略の道筋を探る

VRIO分析の意義は? 差別化戦略を考える際、VRIO分析の重要性を改めて実感しています。この分析を通じて、組織のリソースや能力を「価値があるか」「他にはない珍しさがあるか」「他が真似できないか」「それを活かす体制が整っているか」の4つの視点から評価し、強みと弱みをしっかりと理解できます。 強みをどう見極める? 特に競争の激しい分野で持続的な競争力を持つためには、自分たちの強みを明確にすることが欠かせません。例えば、スポーツチームでは同じリーグ内のチームだけでなく、他の競技やリーグとも比較して学ぶべきか悩むことがあります。視野を広げることで新たな発見やアイデアが得られる可能性はありますが、リソースが分散するリスクもあるため、分析の範囲設定が重要です。 組織強化の鍵は? 組織の強化には、VRIO分析で見つけた強みと弱みを明確にし、土台をしっかり築く必要があります。今回、自分のチームにはまだ理解が不十分な部分があることに気づき、その気づきをもとに考えを深め、チーム全員と共有することが組織全体の成長に繋がると感じました。 方向性の見直しは? 特にゼロから組織を作る場合、深掘りする方向性が正しいか確信が持てないこともあります。だからこそ、しっかり考え抜き、全員と共有するプロセスが重要です。 理想像はどう描く? また、将来的な理想のチーム像を描くことが大切です。その理想に向かい、自分たちが他のチームとどう違い、どう差別化できるかを具体的に考える必要があります。学んだ思考のナレッジを活用し、他チームとの差異や目指すべき独自の強みを深掘りしていきたいと思っています。 理想実現の共有は? 現在の自分のチームには、将来を見据えた理想とその実現のための思考が足りないと改めて実感しています。この考えをしっかりと共有し、言い続けることがチームの成長に必要だと思います。

データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

データ・アナリティクス入門

STEP活用で見える問題解決の極意

分析と課題の関係は? 今週の学びでは、これまでの講義全体を振り返る中で、改めて以下の点の重要性に気づきました。まず、分析とは比較を通じて違いを明確にする作業であること。そして、問題解決には「What(何が問題か)」、「Where(どこに問題があるか)」、「Why(なぜ問題が起きたのか)」、「How(どう対応するか)」という4つのSTEPがあり、この順に検証することで、チーム内で適切な意思決定や対応策の精度向上につながるということです。また、仮説思考の重要性も学びました。一方で、仮説にとらわれず現状のデータから何が分かるのかを整理する必要性も感じました。 目的は本当に何? これまでデータ分析=分かりやすく加工する技術(プレゼンテーション資料や表計算ソフトのスキル)と捉えがちでした。しかし、本講座を通して、何よりも分析する「目的」が重要であり、見せ方や手法だけでなく本質に気づくことができました。 データから何が見える? 現業では直接データを加工する機会は少ないものの、提示されたデータから「なぜこの課題意識を持ち、どのように分析したのか」という分析者の視点を意識して読み解くことが求められています。また、クリエイティブ業務においては、どうしても「HOW」から入りがちなチームメンバーに対し、この問題解決のSTEPを活用して共通の目線を持つことが有効に感じられます。 仮説も大切なの? さらに、新規事業の立案時にも、従来のフレームワークに加えて仮説思考を取り入れ、「データを分け、整理し、比較する」という基本事項を怠らず進めていく重要性を実感しました。 実践はどう進める? 実際に問題解決のSTEPを業務で取り入れ、チーム内での情報共有や課題の整理を通じて、よりシャープな打ち手(How)を見出すための一助になっていると感じています。

データ・アナリティクス入門

データの見方が変わる!定量分析の魔法

定量分析の視点をどう活用する? 定量分析の5つの視点(1. インパクト、2. ギャップ、3. トレンド、4. ばらつき、5. パターン)を学びました。データを漫然と眺めるのではなく、これらの視点で見ることで効率的に示唆を得られると感じました。特に、平均値を取る際に「標準偏差(データのばらつき度合)」という視点をこれまで考えたことがありませんでした。同じ平均値でも「ばらつきがある」か「ばらつきがない」かでデータの意味合いが変わります。今後は標準偏差も併せてチェックしていきたいと思います。 データ比較時のポイントは? 売上やサービス利用者数などのデータを前年度と比較する際には、定量分析の5つの視点を意識して数字を見るように心がけます。また、特定月における新規受講者や解約者を年代別に分析する際、これまで表に落とし込むことは行っていたものの、グラフ作成は少なかったです。今後はヒストグラムなどのグラフを活用し、ビジュアルで傾向を把握できるようにしたいと思います。これはチームメンバーにも促していきたいです。 チームでの視点共有は? まずは、学んだことを言語化し、チームメンバーと共有することが重要です。データの分析もチームメンバーと一緒に行う際、「Aさんはトレンドがないか」「Bさんはばらつきがないか」といった具合に、各メンバーに特定の視点で見る役割を依頼するのも良い考えだと思います。これにより、チーム全体として5つの視点を網羅することができます。 グラフ化で何を検証する? 最後に、各月のサービス利用者の新規受講率や解約率のデータが表として存在していますが、まずは先月のものを目的に応じてグラフ化し、理解の速度や深度にどのような違いがあるのか、グラフから意味ある示唆を導き出しやすくなるのかを検証したいと思います。

デザイン思考入門

解決策じゃない!問いから始まる学び

アンケート変更の必要は? 自社サービスのユーザー向けに定期的に開催しているイベントでのアンケートについては、これまで項目を変更せずに実施してきました。項目変更を行うと比較が難しくなると考えたためです。今後は、アンケート内容に本当に変更の必要があるのか、改めて問い直しながら検討していきたいと思います。 インタビュー内容は羅列になる? ユーザーインタビューでは、インタビュー後の記事化において、質問内容と返答が単なる羅列になりがちな点を改善する必要を感じました。コーディングを実施することで、情報の分析がしやすくなるとともに、他者へ伝わりやすいアウトプットにつながると考えています。まだ試行段階ですが、各担当者と意見交換の場を設け、特にインタビューに関しては、こちらが意識してヒアリングしないと暗黙知を引き出せないため、事前に質問項目に組み込むか、必須項目としてルールを決めることにしています。 定性定量の違いは何? また、今回の取り組みで、解決策を前提に課題を定義しないという考え方や、分析データの収集方法には定量分析と定性分析の2種類があることを認識しました。定性分析は、感情など数値化や可視化が難しい情報の解析に適しており、暗黙知と形式知の両面を理解することが大切です。暗黙知については、こちらから意識して引き出す必要があると感じています。 課題設定はどう見直す? これまで、課題は解決策をあらかじめ想定したうえで捉えていたため、今回の「解決策ありきで課題を定義しない」という視点は大きな気づきとなりました。定性分析の難しさを実感しているため、まずは自分自身のナノ単科におけるカスタマージャーニーを作成し、感情の可視化の練習からアプローチのコツをつかめるよう挑戦していきたいと思います。
AIコーチング導線バナー

「比較 × 違い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right