データ・アナリティクス入門

平均を極めるデータ思考

どの平均値を選ぶ? どのような状況でどの平均値を使うべきかについて学ぶことができ、非常に有益でした。今まではさまざまな種類の平均値を扱ってきましたが、加重平均や幾何平均を利用する理由については深く考えたことがありませんでした。今後は、背景にある意図を意識し、何のため、なぜその平均値を選ぶのかを明確に捉えたいと思います。また、より適切な平均値を選択できるよう努めたいと考えています。 データの見方は? 一方、データ分析においては定性分析の要素が多いことから、平均値を用いる際にはデータの読み解きに十分な注意が必要です。業務に活かすためには、どの視点からデータを捉えるか、そして他の視点が存在しないかを検討することが大切だと感じました。

戦略思考入門

戦略思考の土台を築く挑戦

戦略ツールで何を学ぶ? SWOT分析、3C分析、PESTなどのフレームワークを学んだことで、内外の環境を捉える視点が広がり、戦略の土台構築について理解が深まりました。どのようなツールが戦略策定に役立つのか、具体的なイメージを持つことができました。 技術戦略の意義は何? さらに、担当領域における技術戦略の基盤作りにこれらのフレームワークが有用であると感じ、どのような課題やチャンスが存在するのか、改めて考えるきっかけとなりました。 実践の展望はどう? 今後は、実際に3C分析、SWOT、PESTを活用し、業務改善や具体的なシナリオの構築に挑戦することで、技術開発提案書作成の背景となる土台づくりを進めていきたいと考えています。

戦略思考入門

ROIの数字で実務を再考する

数字評価の意味は? ROIを数字で評価することで、状況が非常に理解しやすくなったと感じます。特に、技術戦略提案書などの背景構築にどのように反映できるか、実務で検討してみたいと思います。 投資対効果ってどう? 一方、ROI「投資対効果」だけで優先を決めるのは、必ずしも最適とは言えないという疑問も残りました。自身の業務については、これまで投資対効果を意識したことがなかったため、改めて工数実績から計算し、優先順位を見直す必要があると考えています。 捨てる選択はどう? また、ROIは捨てる選択を判断する際には有用だと感じた一方で、ROIのみで優先すべき項目を決めた場合に上手くいくかどうかには、やはり懸念が残りました。

戦略思考入門

組織文化が光る差別化の秘密

差別化のポイントは? 差別化という一見わかりやすいキーワードですが、その考察で陥りやすいポイントを学ぶことができました。差別化を追求する中で、検討に十分な時間をかける必要がある点にも一理があると感じました。また、模倣しにくさの要因として組織文化が重要であるという視点は、これまであまり意識していなかったため、非常に新鮮でした。 組織の強みはどこ? 自分たちがどのような組織背景と文化の中で顧客に価値を提供しているのかを整理し、どこに強みがあるのかを明確にしながら業務に取り組むことが必要だと実感しました。今後は、顧客との接点やその前段階となる組織内マネジメントにおいて、常にこの視点を忘れずに意識していきたいと考えています。

データ・アナリティクス入門

平均だけじゃ見えない数値の物語

平均と標準偏差は何が違う? 普段の業務で平均値はよく目にするものの、標準偏差にはあまり注目していませんでした。しかし、データの比較が分析の基本であると意識する中で、単に単純平均だけで比較するのではなく、その比較自体に意味があるかどうかを検討し、適切な指標を選ぶべきだと考えるようになりました。 背景にある要因を探る? また、私の業界では他エリアでの優れた事例を自地域に取り入れることが一般的です。その際、来客数や平均単価といった数値に注目する場面が多いですが、単なる数値の比較に留まらず、背景にある要因について仮説を立て、深く考察する姿勢が重要だと感じています。

アカウンティング入門

数字で描く経営ストーリー

数値は何を示す? これまで、売上、費用、利益といった各項目を個別に「高い」「安い」と評価してきました。しかし、これらの数値を一体的に捉えることで、事業の背景やストーリーが浮かび上がる点に魅力を感じました。 ビジネスはどう進む? また、社内ではこれまでも、なんとなくビジネスモデルのイメージをもとに業務を進めていました。今後は、各プロジェクトのP/Lを丹念に読み解き、イメージが数値として反映されているかをしっかり確認することで、もしズレが生じている場合は、その理由をさらに掘り下げて理解を深めていきたいと考えています。

データ・アナリティクス入門

普段の数字が広げる知の扉

代表値の理解は? 平均値や中央値など、日常的に目にする代表値は理解しやすく、復習にも非常に役立ちました。一方で、普段はあまり接する機会のない冪根といった内容を新たに学ぶことで、知識の幅を広げることができた点が大変有意義でした。 数字の裏側は? また、業務で扱う数字だけでなく、経営陣が提示する数値についても、その背景や算出方法を十分に把握する重要性を感じました。今後は、根拠をしっかりと意識しながらデータを活用することで、クライアントに対してより的確な判断や提案ができるよう努めたいと思います。

データ・アナリティクス入門

疑問から始まる探究ストーリー

どう仮説は組み立てる? 仮説を立てる際には、さまざまな視点、すなわち異なる背景や経験を持つ人々からの意見が必要であり、MECEな仮説を構築する上で重要であることを理解しました。また、日常業務で自社や自部門の課題に目を向け、そこでの仮説立案を習慣化することの大切さも認識しています。 なぜ現象を疑う? そのため、業務の中で起こる現象やデータに対して「なぜこのようになるのだろう?」と疑問を持ち、一歩踏み込んで考察する姿勢を身につけたいと感じています。

「業務 × 背景」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right