クリティカルシンキング入門

視野を広げた新しいアイデアの生み出し方

思考を広げるために必要な視点は? 適切な方法で適切なレベルまで考えること。考えには偏りが生じること。これら3つの「視」を意識して物事を考えること。この3点を取り入れることで、普段の思考が広がり、より深い探究に繋がると感じました。 提案時に大切な3つの「視」とは? 新しいことの企画や提案をする際、特に3つの「視」を意識し、広く深く考えることが重要です。そうすることで、より具体的で多くの可能性を見つけることができます。また、判断を求められる時に、あらゆることを想定して未来を見据えた舵取りができるようになるでしょう。 新しいアイデアを活かすためにどうする? 新しいアイデアが浮かんだときには、3つの「視」を意識して思考を巡らせ、それに伴うデータなども適切に肉付けします。この際、自分の都合に偏らず、客観的に事実と結びつけることを心がけます。 客観的な判断のためにはどう分析する? 判断を求められた時も同様に、自分や自部署の都合にとらわれず、客観的に物事を分析し、未来を見据えた判断を下せるよう努めます。

データ・アナリティクス入門

データ分析で学び得た具体的な手法とは?

分析の心得から具体例へ これまでは主に分析の心得に関するマインドセットを学んできましたが、今週からは具体的な分析手法についての講義が始まりました。平均値が極端な数字(はずれ値)によって大きくぶれる可能性を知っていたものの、中央値を具体的に説明できる計算式が非常に参考になりました。 データビジュアライゼーションの活用法 現在、データビジュアライゼーションに取り組んでいるため、代表値と分布をうまく使って視覚的に「伝わる」図を作りたいと思っています。そのため、標準偏差と分布の使い分けも重要です。どの要素の数値を組み合わせるかという「切り口」が非常に重要だと感じています。 定性的と定量的の融合をどう図る? さらに、アウトプットの質と量が重要であるため、あらゆるデータに対して「分析できないか」という視点を常に意識しています。仕事上、定性的な感覚を重視していますが、そこにデータなどの定量的な裏付けを加えることが大切だと感じています。数値情報の取得が可能かどうかがネックになることが多いというのが、私の経験上の課題です。

データ・アナリティクス入門

反論と仮説で広がる新視点

今週の経験に学ぶ? 私は人事部でDXに取り組み、最近はデータ分析を担当しています。今週も経営層からのご指摘があり、改めて反省する機会となりました。レポートの流れに特殊な点がある中で、社会人としての危機感を常に感じながら業務に取り組んでいます。 仮説の意義を考える? 指示内容は、様々な切り口で他社の人事データと比較することと、仮説を複数立てることでした。当初はどちらかに偏り、特に仮説に引っ張られすぎて決め打ちしてしまったため、網羅性が欠けた点がありました。しかし、教材のWEEK04を学ぶ中で、両方の重要性に気づくことができました。 具体策は何だろう? 具体的には、次の3点を意識することにしました。まず、決め打ちによる思考の狭まりを防ぐために、自分自身で反論や反証を考える習慣をつけます。次に、同じプロジェクトのメンバーにも仮説を立てる意義や、仮説作成のポイントを共有し、ディスカッションの時間を確保するようにします。そして、日常生活の中でもフレームワーク(3Cや4P)を意識して活用し、視野が広がるよう努めます。

クリティカルシンキング入門

データ分析で効果的な戦略を探るコツ

課題をどう掘り下げる? 根本的な課題を明らかにしなければ、一時的な対処で終わってしまい、効果的な対策が難しくなります。そのためには、データを活用し、データの切り分けにも注意を払って、直面する現状を把握することが重要です。原因を追及し、適切に根本的な課題を特定できれば、効果的な対策を考えることが可能です。 売上課題を探る? 売上の分析においてもデータ活用が求められます。次にどういったターゲットを狙って売上を拡大していくのか、現在の課題は何かを探るために利用します。売上を顧客グループごとに切り分けることで、顧客数に課題があるのか、あるいは顧客単価に問題があるのかを特定し、それに応じた戦略を立てることが重要です。 戦略と安全はどう? どのように売上を伸ばしていくのか、どのような対策をとるのかについては、自己分析による提案が求められます。また、ITセキュリティのトラブルが発生した際にも、問題の所在を一つ一つ切り分けて確認します。特に、複雑に絡み合ったケースであっても、それを混ぜて考えないようにすることが重要です。

クリティカルシンキング入門

多角的視点で魅せる学びストーリー

根本原因を捉えるには? 論点や課題、問題の根本を捉えるためには、多角的な切り口からの分析が必要です。グラフなどの視覚資料を工夫して用いることで、データが一目で理解できるように整理すると良いでしょう。分析結果をもとに、的を射た対策を慎重に検討する姿勢が求められます。 問い合わせは何故? たとえば、社内からの問い合わせが多く業務効率が低下している場合、その問い合わせ内容を詳細に分析し、そもそも情報の周知不足なのか、マニュアルが分かりにくいのかといった根本的な原因を明らかにする必要があります。 結果伝え方はどう? さらに、さまざまな視点から問題や課題を分析し、真の原因を把握することが大切です。そして、得られた分析結果を、相手に分かりやすく伝えるためにメッセージ文を十分に検討して作成することが効果的なコミュニケーションへとつながります。 グラフ作成の工夫は? また、グラフ作成にあたっては、結果が直感的に理解できるようにレイアウトやデザインを工夫し、見る人が情報をすぐに把握できる表現にすることが重要です。

データ・アナリティクス入門

課題を解く力が未来を創る

問題意識は十分か? データを分析する前に、まず問題や課題を明確に意識することが大切です。単に「how」から作業を進めるのではなく、「What」「Where」「why」「how」といったステップを順に踏むことで、全体像をしっかり把握できます。また、実務においてはMECEの考え方を意識しながら進めることが求められます。 課題は整理できる? これまで、漠然とした課題に対してなんとなく手をつけがちでしたが、今後はロジックツリーを活用し、全体感と各課題のポイントを明確にしていきたいと考えています。MECEを意識して問題を分解し、整理することで、具体的なアプローチが見えてくるはずです。 現状との差を把握する? また、課題を正しく把握するためには、あるべき姿と現状の違いを整理することが重要です。単に分析を始めるのではなく、ロジックツリーやMECEを用いることで、課題点を細かく分解しながら確認していくことが必要です。出したいアウトプットを意識するだけでなく、丁寧に要素を分解し、進めていく姿勢を大切にしたいと感じました。

データ・アナリティクス入門

仮説実証で未来を切り拓く

どうやって目的を決める? 目的や目標を明確に定めた上で、必要な判断を下すための着眼点を学ぶことができました。事象におけるステップや因果関係を意識し、まずは分析の仮説を立て、その後実際のデータ解析を通じて検証しながら、問題を絞り込む手法が有効であると理解しました。 どう検証すれば確実? 問題解決型の業務においては、事前に予想される因果関係を各種ツールを用いて整理し、データで検証することで、より正確な判断を短時間で行うことが可能だと感じています。一方、課題創造型の業務では、目的と背景を基にツールなどを活用して仮説を組み立て、実践と検証を繰り返すことで、より良い業務実施につなげる方法があると考えます。 どう計画を固める? 改めて、まずはしっかりと目的と目標を決めることが重要だと感じました。関係者を巻き込み、十分な時間をかけて納得のいくプランを作り上げ、その上で複数の仮説を立てる必要があります。また、各種分析手法を実践する中で自分のスキルと経験を徐々に深め、より多角的な判断ができるようになりたいと考えています。

クリティカルシンキング入門

問いかけで解決力アップ!業務活用術

どうして問いに変える? イシューは問いの形にするのが有効だと学びました。問いの形にすると、脳が本能的に答えを探し始めるからです。また、同じデータを見ても、立場が異なれば立てるイシューも変化することがあります。そのため、イシューを立てること、そしてそれを抑え続け共有することが重要です。 業務で活用している? 普段の業務においては、経営層向けの資料や社内外の教育資料、会議資料の作成時にこの学びを活用しています。特にデータ解析時には、データを丁寧に分解して分析し、視覚的にも見やすくグラフ化することを心掛けています。文章作成やチェック時、そして会議のファシリテーションにおいても、イシューを立て、抑え続け、イシューに沿った答えになっているかを常に確認しています。 誰の視点で考える? さらに、自分自身に対して批判的な視点だけでなく、場合に応じて経営層の目線で考えてみることも意識しています。チームで仕事を行う際や会議のファシリテーションの場面では、イシューの共有を必ず行い、全員で目線を合わせることを心掛けています。

データ・アナリティクス入門

データ分析で営業力をアップ!

データ分析の重要性とは? データ分析について、これまで漠然と取り組んできましたが、「データ分析は比較である」という説明が非常に印象的でした。データを扱う際には、その内容をよく考えて、意味を成すものを選別して分析することが大切だと感じました。 営業とマーケティングへの活用 私の仕事は営業とエリアマーケティングを担当しており、売上の変動や要因分析にデータ分析が活用できると考えています。しかし、具体的な活用法についてはまだイメージが固まっていないのが現状です。今後の講義を通じて、どのように自分の仕事に役立てられるかを考えていきたいと思っています。 生産設備におけるデータ活用の可能性 また、私は工場で使用される生産設備の部品販売に携わっています。部品は用途によってさまざまな構成があり、データ分析を通じて顧客がどのようなスペックを求めているのかや、年間でどの程度の生産が可能なのかを理解できれば、マーケティングに大いに役立つでしょう。そのためにもデータ分析に関する書籍や統計学の知識を学ぶ必要があると考えています。

データ・アナリティクス入門

目的明確で築く確かな結論

分析目的は何? 分析の目的を明確にすることは非常に大切です。何のために分析するのか、その目的をはっきりさせた上で、比較対象を可能な限り条件を揃えて行うことで、有益な分析結果が得られます。結果として、比較のためのデータ収集が重要なプロセスとなり、その積み重ねが有意義な結論に結びつきます。 品質管理はどうする? また、品質管理の業務においては、障害の原因分析や発生した障害に対する対策の有効性を検証する際にも、この手法が有効です。分析の目的が既に明確であれば、次に課題となるのは、比較対象となるデータの選定と収集です。その際、これまでの経験を踏まえ、しっかりと仮説を立てながら進めることが、正確で有意義な結論を導くポイントとなります。 仮説作成はどう進む? さらに、仮説を立てる場合は、個人の経験や知識だけに頼るのではなく、周囲の知恵や知識を共有して取り入れることが重要です。関係者との情報のやり取りが、より有効なデータの選定と収集につながり、最終的には信頼性の高い結論を導き出すための大きな助けとなると考えます。

データ・アナリティクス入門

比較の視点が開く学びの扉

データ比較の意味は? データ分析は本質的に比較であり、たとえばパソコン購入時に「購入目的」や「必要性」を問い直す姿勢には、根本から見直す意義を感じました。比較の材料が多岐にわたるため、広い視点で重要な要素を捉えることが、適切な比較―すなわち分析―につながると実感しています。 地域診断の見方は? また、今後「地域診断」を学生に教える際には、国、都道府県、市町村の各レベルでのデータ比較や近隣地域との比較が必要であることを強調したいと考えています。さらに、データの推移を見る際には、時代背景や社会情勢の変化、住民の価値観、教育水準、生活水準、文化、財政状況など多様な観点からの比較が不可欠です。 指導計画はどうなる? 来週から始まる学生の実習地での地域診断指導に向け、資料の見直し、指導スタッフとの方針の共有、記録用紙の修正を行う予定です。複数の実習施設に分かれて進められる実習では、各グループが進捗状況を発表することで、自分の実習地と他との比較が自然に行われ、異なる分析方法を学ぶ良い機会となると期待しています。

データ・アナリティクス入門

分かると変わる!シンプル分析のすすめ

何がわかったら購入? パソコンを購入する際に、何を調べ、どのような情報が得られたら購入に踏み切るかという問いかけから、データ分析における「分析」の意味が明確になったと感じました。「分析」というと堅苦しくなりがちですが、「何がわかったら購入するか」というシンプルな視点を常に意識したいと思います。 意思決定のヒントは? 現状、組織全体でデータを活用して意思決定を行う文化が十分に根付いていないため、「何がわかったら◯◯するか」という観点を直接業務に取り入れるのは難しい印象を受けました。しかし、この視点を意識しながら業務を進めると、必要なデータや情報に気づく機会が増えると考えています。 新規事業の目的は? また、現在企画中の新規事業においても、「何が分かったら◯◯するか」という目的設定を明確にすることが重要だと感じています。特に、地域におけるアンコンシャス・バイアスの解消を目指す事業においては、目的が不明瞭な部分があるため、その課題解決の有用性をデータに基づいて説明できるようにしていきたいと思います。

「重要 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right