データ・アナリティクス入門

複数仮説が切り拓く新たな視点

複数仮説は有益? フレームワークを活用することで、仮説作成における2つのポイント―複数の仮説を立てること、そして仮説同士の網羅性を担保すること―が非常に分かりやすくなりました。いくつかの手法を身につけることで、思考が偏りがちなときに役立てられると実感しています。 決め打ちは疑問? また、仮説を決め打ちにしない姿勢の大切さも感じました。これまでは、一つの考えに固執してしまいがちでしたが、フレームワークを使うことで複数の視点から検証し、反論を考慮することが可能になりました。今あるデータだけでなく、必要な情報は自分で収集するという意識を持ち、より抜け漏れのない仮説作りを目指していきたいと思います。

データ・アナリティクス入門

既成概念を超えた発想のヒント

柔軟な発想って何? 既存の考えにとらわれず、引き出しを増やすことが仮説を立てる上で非常に重要だと感じました。 仮説の枠組みは? 3C分析や4Pの概念は耳にしたことがありましたが、実際に仮説を立てる際には意識できていなかったと気付きました。そのため、いきなり案を考えるのではなく、まずどのように考えるべきかを整理する必要性を実感しました。 どう顧客に寄り添う? また、離職者を減らすアプローチや、顧客の課題分析の際に、改めて3Cや4Pの考え方を取り入れる意欲が湧きました。さらに、顧客が自社の分析に必要なデータの種類や、適切な集計方法を提案する際にも、この視点を応用していきたいと思います。

クリティカルシンキング入門

相手目線で磨く説得力

なぜ準備が必要なの? 相手の立場に立ち、気になるポイントをあらかじめ把握することで、仕事やプレゼンテーションがスムーズに進むと感じています。これは、一朝一夕で身につく能力ではなく、日々の訓練と意識が必要です。 数字は何を示す? たとえば、財務分析や売上分析の依頼においては、与えられた情報から何が導き出せるかを、データと論理的思考を組み合わせながら考えます。その結果、上長やマネジメント層に対して、より説得力のある報告が可能となります。 意識はどう成果に影響? 簡単な課題ではありませんが、日々意識を高く保つことで自然にスキルは身につき、大きな成果につながると実感しています。

データ・アナリティクス入門

実践!多角的視点で考える仮説力

どの切り口から考える? 仮説を立てる際は、「ヒト、モノ、カネ」といった複数の切り口から検討するよう意識しています。最初は「しっくりこないけどこれっぽい」という回答に終始してしまいがちでしたが、実はこれは「なんとなく」仮説を立て、意識的に体系化して思考できていなかったからだと気づきました。 検証の順序は合ってる? また、課題に取り組むとき、すぐに思い浮かぶ仮説や、データが集めやすい仮説に飛びついてしまったことを反省しています。一度、様々な角度から出した仮説を並べ、順に検証していくというステップを大切にすることで、より論理的で確固たる仮説立てと検証ができるようになりました。

クリティカルシンキング入門

MECE思考で拓く数値の新視点

数字データ整理は? 数字データを分解し、表やグラフなどで見やすく整理すると、情報の捉え方が変わり、違った視点から理解できることに気づきました。情報を整える際は、もれなくダブりなく整理するためにMECEを意識し、層別、変数、プロセスといった切り口で分類することが大切だと実感しています。 事業所データの見方は? また、仕事で各事業所ごとのデータを扱うにあたり、階層別、用途別、期間別といった観点からMECEに基づいて分類することが、傾向の管理や分析に役立っています。数字データを表にまとめ、グラフ化することで、より見やすく、伝えやすい形に加工する工夫が重要だと感じました。

データ・アナリティクス入門

繰り返し検証で磨く納得力

仮説検証の意義は? 仮説を立て、その仮説を実際に検証することが重要です。検証方法や使用するデータに誤りがないかを確かめることで、より具体的な仮説が作成でき、仮説の精度が向上していくことが分かりました。 検証繰り返しは大丈夫? これまでの分析では、仮説に基づく作業は行ってきたものの、同じ仮説を繰り返し検証する取り組みは十分でなかったように感じます。仮説に誤りがないかしっかりと確認することで、具体的かつ精度の高い仮説が作成でき、説明する相手に納得感を与える報告が可能になると考えます。そのため、今後の分析作業ではこの考え方を意識し、検証作業を繰り返すことが重要です。

データ・アナリティクス入門

平均だけじゃ見えない数値の物語

平均と標準偏差は何が違う? 普段の業務で平均値はよく目にするものの、標準偏差にはあまり注目していませんでした。しかし、データの比較が分析の基本であると意識する中で、単に単純平均だけで比較するのではなく、その比較自体に意味があるかどうかを検討し、適切な指標を選ぶべきだと考えるようになりました。 背景にある要因を探る? また、私の業界では他エリアでの優れた事例を自地域に取り入れることが一般的です。その際、来客数や平均単価といった数値に注目する場面が多いですが、単なる数値の比較に留まらず、背景にある要因について仮説を立て、深く考察する姿勢が重要だと感じています。

戦略思考入門

捨てる勇気で見える新たな学び

どんな視点で判断? 戦略的に「捨てる」という意識を持つことが重要です。その判断を行う際には、すぐに手に入る目の前のデータだけでなく、見えていない部分も様々な視点から評価し、目的に照らして判断する必要があると感じました。既存のやり方や慣れを疑うことも、大切なポイントです。 人的作業の見直しは? また、人的作業の見直しやシステムの導入を考えるとき、この「捨てる」という選択は非常に有効だと感じました。作業が本当に必要なのか、なぜ必要なのかをしっかりと考え、必要な要素を洗い出すことで、これまでのルールを一度手放して新たに構成し直す決断を実践していきたいと思います。

データ・アナリティクス入門

仮説の罠を超える学び

仮説の固執はどう? これまでの経験から、仮説を立てる際に一方的に「決め打ち」してしまっていたことが反省点として浮かび上がりました。たとえば、部署としての方針を説明する資料作成時に、特定の仮説に固執し、その仮説に合わせたデータ収集に偏ってしまう傾向がありました。 多角的検証はどんな感じ? これからは、まず複数の視点からフレームワークを活用して仮説の網羅性を確認し、自分自身で異なる可能性を批判的に検証することを心がけたいと考えています。また、データ収集に際しては、どのように集計し、どのようなグラフや指標で示して分析を進めるかを意識することの重要性も再認識しました。

クリティカルシンキング入門

心に響くスライドの秘訣

スライドの意図は? グラフとメッセージが連動するスライド作成のプロセスや考え方が非常に印象的でした。通常、スライドはどうしても作成者の主観が反映されがちですが、各ページのメッセージと目的に注目し、聞き手にスムーズに伝わるための多角的な準備や第三者目線を意識することの重要性を再認識しました。 ルーチン作業の意味は? 業務においては、スライド作成やメールでのアナウンスといったルーチンワークが多くあります。特にスライド制作では、結論と背景、データやグラフ、仮説の考察など、各局面で伝えたい内容を聞き手が自然に受け入れられるよう努めたいと思います。

データ・アナリティクス入門

平均だけじゃない!データの真実

平均と偏差の活用は? データ集団の分析においては、どの平均値を採用するかが重要です。数字の性質を把握するために、平均だけでなく標準偏差を確認し、データのばらつきを評価することが大切だと感じました。なお、エクセルには標準偏差の計算関数が用意されているため、計算の手間はかからず助かっています。 仮説と切り口は? 業務で数字データを扱う場合、まず目的と仮説を明確にし、その上でどこから切り口を作るかを整理して分析することが必要です。単に数字を断片的に眺めるのではなく、全体の流れや構造を意識してデータを読み解くよう努めています。

クリティカルシンキング入門

逆算で見つける本当の課題

データの本質は? 今回の学習では、データをただ見るだけではなく、構造的に捉え、課題を正しく抽出した上で相手に伝わる形へと整理するプロセスの重要性を学びました。数字を並べるだけでは本質的な課題は見えてこず、課題は細かく分解することでようやく明確になることを理解しました。 伝える結論は? また、効果的なプレゼンテーション資料は「伝えるべき結論」から逆算して作成するのがポイントであると再認識しました。今後は、この視点を常に意識し、相手にとって分かりやすい資料作りに努めることで、現場の意識や行動に変化をもたらしていきたいと思います。
AIコーチング導線バナー

「意識 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right