データ・アナリティクス入門

データ分析で解く業務の課題解決法

データ分析はなぜ有用? データ分析は、問題解決を確実に進めるために非常に有用であると理解しました。ライブ授業では、前提条件が整理されていたため、問題解決のステップである問題箇所の特定や絞り込みが比較的容易でしたが、実際のビジネス現場では、これらのステップが難しく、訓練が必要だと強く感じました。 売上減少はどう解決? 今回のライブ授業では、事業運営における売上減少という問題をデータ分析で解決する演習を行いました。その際の問題解決のステップは、1. Whatで問題を明確にし、2. Whereで問題箇所を絞り込み、3. Whyで原因を分析し、4. Howで解決策を考えるという流れです。 具体分析の進め方は? 具体的には、売上減少という問題を特定し(What)、売上を構成する客単価や客数のデータ分析を通じて問題の所在(Where)を特定しました。その要因を仮説・検証により原因分析(Why)し、次に打ち手を判断・評価する(How)という手順です。分析においては、データに基づいたストーリーを構築することが重要です。比較対象を明確にし、データを加工して必要な情報を可視化することがポイントです。 差異の原因は何? 日常業務でも計画と実績との差異分析を行っていますが、浅はかな要因分析に留まらないように、原因分析を網羅的に行うことが重要だと考えます。また、問題を明確にし、問題箇所を特定し、原因分析し、打ち手を考える一連の手順によって、データ分析が目的化せず、何を主張するための分析なのかを振り返ることができます。 定着はどのように? これらの問題解決のステップを習得し、データ分析を取り入れた一連の流れを月に2回以上実施することで、手法の定着化を図りたいです。特に、問題箇所の特定(Where)に苦手意識がありますが、事例を積み重ねることで対応時間の削減にも取り組みます。

データ・アナリティクス入門

データが教えてくれた学びのヒント

代表値で全体像は? データをどのように加工して把握しやすくするかを学びました。まず、代表値を求めることで全体像をシンプルに掴む方法を理解しました。代表値としてよく使われる平均値は、データ全体の傾向を捉える上で便利ですが、ばらつきを反映しにくいという欠点があります。そのため、目的に応じて加重平均、幾何平均、中央値などの手法を使い分ける必要があると感じました。 偏りはどう捉える? また、データの偏りを把握するために標準偏差が有効であることを学びました。標準偏差は、複数のデータが平均値からどれほど離れているかを示し、ばらつきを具体的に表現する指標として役立ちます。 グラフと予測は? さらに、グラフ化されたデータにアプローチする方法も学習しました。グラフ上の特徴的な部分に着目することで、問題点を深堀りしやすくなるという点や、グラフを見る前に予測を立て、その予測と実際のデータを比較する方法が、分析の深化に効果的だと感じました。データ同士を比較し、仮説を立てることで、次に分析すべき方向性が明確になるのだと実感しました。 代表値の使い分けは? 代表値の選び方についても触れました。たとえば、年度ごとの収益を分析する際、単に平均の粗利額を示すのではなく、プロジェクトごとに異なる売上金額を加味して加重平均を採用することで、より適切な表現が可能になると考えました。また、ばらつきの表現に標準偏差を用いることについては、これまであまり意識していなかったため、今後は積極的に活用していきたいと感じました。 学びをどう活かす? 今回の学びを通じて、データを多角的に把握することの重要性を再認識しました。今後は、常に自分の予測と実際のデータとのギャップに注目し、過去のデータや他のプロジェクトのデータとも比較しながら、具体的な仮説を立てて深堀りを進めていきたいと思います。

データ・アナリティクス入門

問題の原因をデータ分析で解明!

問題の原因をどう探る? 問題の原因を探るためには、データを確認しながら原因を突き止めることが重要です。問題の原因を明らかにするために、プロセスを分散して問題箇所を絞り込み、原因の仮説を立てるのが効果的です。問題がある場合、その結果には必ずその流れがあり、その流れを押さえることで、プロセスのどの段階に問題があるのかを特定できます。 解決策の検討はどう進める? 解決策を検討する際は、複数の選択肢を洗い出し、根拠を持って絞り込むことが求められます。ステップを踏んでデータを分析し、問題解決の精度を高めることと、仮説を試しながらデータを収集し、より良い問題解決に繋げることは、両者のアプローチを組み合わせることが効果的です。まず手始めに身の回りのデータを分析すること、分析の練習を積み重ねること、そしてどんな分析計画を立てるかシミュレーションし、どんな情報を誰から収集するのか、データはどんな形で収集すればよいかを考えることが大切です。 シンプルで低コストなA/Bテストの利点 A/Bテストは、AとBの施策を比較するシンプルなテストです。運用や判断がしやすく、低コストで少ない工数で実施できるため、リスクが少ない。A/Bテストを行う際には、目的や仮説をしっかりと明確にし、有効なデータが集まるまで実施します。ただし、複数の要素をテストしたい場合には別の手法を検討すべきです。また、パターンは同時に同じ期間行うことが必要です。 データ分析の第一歩は何から始める? 解決策を考えるときには、必ず複数の選択肢を検討し、「ステップを踏んでのデータ分析」と「仮説を試しながらのデータ収集」の両輪で分析を行うことが効果的です。分析が苦手な方には、まず身の回りのデータを分析すること、分析の練習を積み重ねること、そして問題にはそこに至るまでの流れがあることを意識することをお勧めします。

クリティカルシンキング入門

踏み込むデータ、広がる発見の世界

データと本気で向き合う? データの用い方や見せ方について再確認でき、また新たな発見を得ることができました。従来は説得力や妥当性を高めるためにデータを利用してきましたが、今回の講習では「データとの向き合い方」自体に踏み込むことで、さらに可能性が広がると感じました。踏み込むというのは、データを分解・分析し新たな発見につなげることを意味します。これまでは、一定の目的が達成できればそれ以上深堀りしなかった自分を反省し、今後は偏りを減らしてより深く分析することで、発見の数や他者への探求の深さ、そして説得力の向上につなげたいと思います。単に表面的な理解で終わるのではなく、データから何が見えているのかを追求していく姿勢が大切だと感じました。 業務で分析は活きる? また、業務においては分類・分解・分析が多くの場面で役立つと実感しました。たとえば、目標設定では、市況や需要予測に基づいてシェアや販売量を設定し、その根拠となるデータや分析結果をもとに説明することで、計画の信頼性が高まります。実施計画においては、マーケティング戦略や営業活動の手段、ターゲット、期待できる効果、効果が現れるまでの時間などを細かく整理し、実行者、評価者、受益者それぞれとの連携を明確にすることが可能です。さらに、効果測定では、シェアや販売量・金額と実施計画との因果関係を明確にして、次のアクションの策定や判断につなげることができます。 分析手法を検討する? こうした業務プロセス全般において、データの分類・分解・分析は有効な手法です。具体的には、説明が必要な場面で、利用可能なデータや参考になる情報がないかを常に意識し、検討することが大切です。たとえば需要予測においては、単に過去の推移を見るだけでなく、季節要因や提供者ごとの特徴も踏まえて分析することで、より実効性のある判断が下せると感じました。

クリティカルシンキング入門

メールに彩り、伝わる魔法

視覚化はなぜ効果的? <W4 学び、気づき> 視覚化することで、情報が2次元で処理できるようになり、文字情報よりも処理速度が早くなり、齟齬や誤認が起きにくくなることを学びました。これには、適切なグラフの利用だけでなく、伝わりやすい表現方法を身につけることが重要です。また、フォントや色についてはこれまで、自身の感覚や経験に頼って使用していましたが、今回学んだ知識を通じて、意識的に使い分ける必要性を痛感しました。 文書作成におけるポイントに関しても、普段から意識していた内容と大きなズレはなかったものの、具体的なポイントを学ぶことで印象がより強く残りました。特に「相手に知りたいと思わせる」工夫や修辞法の活用は、これまで十分にできていなかったため新たな気づきを得ることができました。 仕事でどう使う? <W4 自身の業務への当てはめ> 業務では、電話よりもメールで社内外と連絡を取り合うことが多いため、伝達内容が多くなると文章が形式ばり、堅い印象になることがしばしばです。そこで、今回学んだフォントや色、レトリックを取り入れることで、相手に分かりやすく伝わる文章を心掛けたいと思います。グラフに関しては、データの正確性に目を向けがちでしたが、今後は自分の主観ではなく、相手の目線を意識して作成や確認を行いたいと考えています。タイトル、単位、色など、細部にわたり注意を払っていきます。 実践はどう始まる? <W4 行動計画> 日々の業務ではグラフやパワーポイントの使用機会が少ないため、今回の学びは主にメール文書作成に活かす予定です。ポイントの強調や最後まで読み進めてもらえる工夫を取り入れるため、会社のスケジュールにリマインダーを設定し、毎朝前週の学びも含め確認するようにします。これにより、最低1ヶ月間は継続して意識を高め、実務に役立てていこうと考えています。

クリティカルシンキング入門

分析の切り口を変えて、新たな発見を!

データ分析で解像度を高めるには? データは受け取ったままではなく、一手間加えることで解像度が上がります。絶対値だけでなく、相対値でも数字を出して比率を確認し、数字はグラフ化することで視覚的に課題を見つけやすくなります。また、取り扱う情報が売り手側か顧客側かで分析の視点が変わることを認識しておくことが重要です。 偏りを防ぐためにはどうする? 基本的に売り手側の情報から分解することが多かったため、偏った視点だということを意識しなければなりません。切り口は時間、人、手段など様々な角度から分解し、可能な限りMECE(Mutually Exclusive, Collectively Exhaustive)で分解することで、ダブりなくモレなく網羅的に分析が可能になります。 新たな課題を発見する方法は? 事業部の売上を分解する機会がよくありますが、売り手側の情報に偏らないように注意が必要です。慣れた分解手法を使うことが多いため、異なる視点や切り口、深掘りをすることで、今まで見えていなかった課題を見つけることができるでしょう。 分解のブレを防ぐには? 事業部の売上や部署の売上、メニュー毎の売上、顧客毎の売上など、分解できそうな要素は多くありますが、まず最初に全体の定義を決めることで分解のブレを防ぎ、有効に活用していくことが大切です。毎週や毎月のように分析を行う機会があるため、週報や月報でこれまでと違った切り口で分解を試みてみようと思いました。 異なる切り口での分析の効果は? これまで「課題はこれだ」と決めつけていた部分も多かったため、本当にそうか疑い、別の切り口で分解することで新たな課題を特定できると感じています。早速今回の週報から分析と分解を活用し、全体の定義を決め、MECEで考えるよう心がけ、ダブりやモレのない進行を目指します。

データ・アナリティクス入門

現状と向き合う、理想への一歩

ありたい姿とギャップは? 今回の学びでは、問題解決プロセスの重要性を改めて実感しました。まず、「ありたい姿」と現状のギャップを明確にすることが、課題の適切な設定につながると感じました。これはデータ分析のみならず、さまざまな業務に応用できる考え方です。 どう課題を分解する? 課題を分解する際には、各要素に分けるためにロジックツリーを活用し、MECEを意識して重複や抜け漏れがないように整理する手法が非常に有効でした。また、問題解決のプロセスをWHAT(何が問題か)、WHERE(どこに問題があるか)、WHY(なぜ問題が生じたのか)、HOW(どのように解決するか)の4つのステップに分けて考える方法は、実践的かつわかりやすいと感じました。 現状と理想はどう? 分析を始める前に現状と理想のギャップを把握することで、無駄な作業を省き、重要なポイントに的を絞った課題設定が可能です。他の人が設定した課題も一度自分で見直す習慣をつけることで、見落としが防げると考えています。 目標はどう捉える? また、自身の目標設定において、ただ数値を追うのではなく「あるべき姿」を明確にすることが、戦略的なアプローチへとつながります。たとえば、ソフトウェア導入時には現状の課題を整理し、導入によって解決すべきポイントを明確にすることで、より合理的な選定ができると実感しました。このスキルを業務全体に活かすことで、より本質的な課題解決が可能になるでしょう。 手法はどう共有? 最後に、今回学んだ問題解決の手法を部内で共有するつもりです。今までのケースバイケースの対応を見直し、データをもとに客観的かつ一般的な対策を検討するアプローチの普及を目指します。ただし、過去に特定の調査で効果が得られなかった経験もあり、状況に応じた柔軟な対応が求められることも実感しています。

クリティカルシンキング入門

データ分析のコツで業務効率アップを実感

数字分析で見える傾向は? 数字をいくつかのパターンでグラフ化し比較すると、傾向や特徴がつかめることがわかりました。知りたい情報に対して、意図的に複数の分析軸が必要であることも理解しました。特に一番の気づきは、一つの分析結果だけを見てすぐに結論を出すのは危険だということです。急ぐあまりに、ついやってしまいがちですので気を付けたいと思います。 分解時の注意ポイントは? また、切り口を考える際のポイントとして、全体を定義したうえでモレなくダブりなく分解していくことが重要だと感じました。意識してチェックしていないと、歪みが出ることに気付けません。 課題の本質をどう見抜く? 自分の業務では、お客様アンケートなどを整理する際の切り口を設定するときに使えると思いました。さらに、原因不明な状態で課題改善を依頼された際にも有効だと感じます。例えば、上司から「この課題はおそらくこの辺に原因があるからこの方向性で解決してほしい」と相談され、現場では「ほんとの原因はそこではないと思う」という意見の乖離があった際、どのように調整すればよいか悩むことがあります。そのようなときに、要素分解を用いて課題の本質を明らかにすることができると思いました。 精度の高い分析へ向けて 現在推進しているサイトのUI改善は、ヒアリングを中心に改善施策を検討していますが、今一度データの分析を掘り下げてみたいと思いました。その際に以下の点を実施しようと思います。 - 切り口を複数用意するために、分析に必要なデータを多く収集する - 手を動かして分解する - どんな切り口が分析に役立ちそうか関係者にもヒアリングしてみる - モレなく、ダブりなくの視点で問題ないか、分析の切り口を周囲の人と意見を聞き確認してみる 以上の点を意識して、より精度の高い分析を行いたいと思います。

デザイン思考入門

SCAMPERが拓くAI資料作成革命

SCAMPERは何ができる? PMIのAI Agentに関する登壇資料作成の中で、SCAMPERのフレームワークを応用する試みが行われました。具体的には、S(Substitute)として従来のPPT作成をやめ、ClaudeやGensparkなどのツールで資料を作成した後にPPT化する方法や、C(Combine)でGeminiのDeep ResearchとChatGPTのデータ分析、そしてClaudeやGensparkのスライド作成機能を組み合わせる工夫が挙げられます。また、A(Adapt)ではDeep Researchを講演シナリオ作成に応用し、M(Modify)ではGensparkの生成物をFigmaで編集する方法、P(Put to another use)ではジブリ化を意識した画像作成機能を利用してスライド資料を作成するアイデアが検討されました。さらに、E(Eliminate)により、ゼロからのPPT資料作成を最小限に抑え、R(Rearrange)では結論を補強するためのエビデンス集めにDeep Researchを活用するという工夫がなされました。 資料作成の今後はどうなる? 一方で、AIによる資料作成の技術は向上しているものの、何度も修正が生じた結果、従来の方法と比べると作業工数に大きな差がない状況です。以前はほとんど使い物にならなかったツールが、現在は曲がりなりにも利用可能なレベルにまで進化しており、今後の発展に期待が持てると感じました。ただし、現時点ではかなりの工夫が必要なため、AIにそのまま講演全体を依頼するのは難しいと実感しました。単一のツールやアイデアだけでは実現が難しい面もありますが、SCAMPERのようなフレームワークを活用することで、多様な視点やアイデアが生まれ、AIを用いた資料作成の可能性が広がると考えています。

リーダーシップ・キャリアビジョン入門

仕事の任せ方で変わる部下の成長

任せ方の見直しは? 自分の仕事の任せ方が、相手にとって過度な負荷になることがあると知りました。 選択にリスクは? 演習では、データ入力の後にどんな仕事を任せるかというワークがありました。私は、いきなり経営陣にプレゼンする資料を作成させるという仕事を選びました。当時の私はこれが最適だと思って選択しましたが、その選択にはリスクがあることが示唆されました。 成長重視で良い? 成長や経験に重点を置きすぎると、部下の能力や気持ちが追いつかないことがわかりました。個人的には追いつかなくても良い経験だと思っていましたが、仕事の成果に重点を置くとリスクがある選択であり、部下のモチベーションにもリスクとなることを学びました。 新人育成はどう? これから新しく配属されるメンバーの育成を担当することになります。新人育成では、お客様との相談業務を行えるようにするのがゴールですが、すぐには難しいため、少しずつ任せることが必要です。今回の学びは、この育成業務に大いに活かせます。 既存メンバーの活用は? もちろん、既存メンバーに対する仕事の任せ方としても活用できるスキルなので、意識して使っていきたいと思います。 ゾーンの境界は? まずは新規メンバーの育成に活用します。相手の能力や気持ちを確認しながら、ストレッチゾーンになりうる仕事を任せていきたいと考えています。具体的には、ストレッチゾーンとコンフォートゾーン、パニックゾーンの境界線を探りながら進めていきます。 目標再設定は? 次に、既存メンバーへの目標進捗ミーティングに活用します。今期は3ヶ月が過ぎ、状況も変化しているので、ミーティングを設定し、どんなことをどのくらい、どのように行ってほしいかを再設定したいと思います。部下が前向きに取り組める部分を確認し、再設定を行います。

クリティカルシンキング入門

伝わる!魅せる学びのヒント

グラフの伝え方は? WEEK4では、まず「適切な表現方法」について学びました。グラフに関しては、何を伝えたいかを軸にしてグラフを選び、作成することが大切だと感じました。同じデータでも、グラフの種類によって伝わりやすさが異なるため、何についてのデータかが一目でわかるよう工夫する必要があります。 過剰装飾は逆効果? また、文字情報では過剰な装飾が逆効果になるとともに、書体や文字の色によって印象が大きく変わることを学びました。アイコンや図を加えることで視覚的な理解を促進できますが、加える要素がノイズとならないように注意することが求められます。 スライド配置はどう? さらに、スライド作成においては、情報の順番を意識しながら文字やグラフを配置することが必要です。複数の情報をまとめる場合でも、最も伝えたいポイントに絞ることで、読み手にとって分かりやすい構成を作る工夫が大切だと感じました。 引き込む文章は? 一方、「読んでもらえる文章の書き方」では、冒頭部分の件名や1スクロール以内の情報で相手の興味を引くことの重要性を学びました。ただ文章を羅列するのではなく、伝えたい内容を整理し、読み手が自然と読み進めたくなる工夫が求められます。 プレゼン資料はどう? 社内でのプレゼンテーションや資料作成においては、注目してほしい内容に合わせたグラフや、情報の配置の工夫、目次や見出しの活用が効果的です。また、社外向けのメールやポスター、動画のサムネイルなどでは、件名や冒頭で相手の興味を引く工夫と、誰にでも伝わる言葉選び、書体や色彩の使い方が印象に大きく影響することを学びました。 全体の学びは? 全体として、視覚的な工夫と分かりやすい文章構成の両面から、相手に伝わる情報発信の方法を学べたと感じています。

データ・アナリティクス入門

データ分析で実現する未来の可能性

比較の重要性とは? データ分析において、比較は極めて重要な要素です。要素を整理し、性質や構造を明確にすることで、なぜ「良い」あるいは「悪い」と判断されるのかを理解することができます。判断するためには、特定の基準や他の対象との比較が必要であり、比較を通じて初めてデータに意味が生まれます。 目標設定の重要性 分析には目的や仮説の明確な設定が不可欠です。分析の目的が曖昧であったり、途中でぶれてしまうと、都合の良いデータばかりを使う危険性が生じます。また、不要な分析に時間をかけてしまうリスクもあります。したがって、「何を得たいのか」という分析の目的と、それに必要なデータの範囲をしっかりと見極めることが必要です。 データの特性と可視化 データは質的データと量的データに分類され、さらにそれぞれ名義尺度・順序尺度または比例尺度・間隔尺度に分解できます。それぞれのデータの特徴を理解し、注意しながら扱うことが重要です。異なるデータを組み合わせることで、ひとつのデータだけでは見えてこなかった新しい情報を得ることが可能です。これらを効果的に可視化するために、グラフを利用しますが、グラフには適した見せ方があります。例えば、割合を示すには円グラフが、絶対値の大小を比較するには棒グラフが適しています。 新プロダクトの市場分析 現在、私は新しいプロダクトのリリースによって市場規模がどれだけ拡大するかについての分析を進めています。分析結果を基にした組織全体でのコンセンサス形成が不可欠であり、そのためには分析結果をわかりやすく可視化することが重要です。講義で学んだ内容をもとに、収集したデータをEXCELで整理し、グラフで可視化する予定です。どのデータをどのグラフで可視化するかは、講義の知識を活用しつつ、基準の設定も意識しながら判断しています。

「意識 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right