データ・アナリティクス入門

未来を切り拓く!仮説思考の力

仮説はどう整理する? 複数の仮説を立てる際には、その網羅性と分類が重要です。過去の失敗を分析する場合や、将来の事業の成功を予測する場合には、3Cや4P分析を活用して仮説を立ててみると良いでしょう。 データ収集はどうする? 仮説を裏付けるためのデータは常に存在するわけではありません。必要な情報を収集する場合、誰に何をどのように聞くべきかを慎重に考える必要があります。都合の良い情報だけを集め、他の可能性を排除しないようにする意識も大切です。この姿勢は「関心や問題意識のないところに仮説は生まれない」というマインドセットにも通じています。 市場特性の見極めは? 3Cや4Pの視点で現在のビジネス状況を正しく理解することが不可欠です。しかし、市場や業界、製品が特殊な場合には注意が必要です。例えば、医療業界ではエンドユーザーが患者であり、購入決定権を持つのは医療者であるケースがあります。広告制限のある製品については、適切な顧客設定と検証が必要です。自社だけでなく、関わるグループ施設市場を含めた3C、4P分析も有効です。 3W1Hで速さは向上? 仮説の3W1Hを繰り返すことでビジネススピードが向上します。過去と未来の仮説を分けて分析し、サイクルを回すことが必要です。たとえば、大型コンペの参加が有効だったか、その前後の効果や成功の分析、次回の見込みや採用率の変化が周囲に与える影響の予測を行います。 Excel作業改善のコツは? データの比較基準が異なる場合、データの取得、加工、単位や見え方の統一が課題になります。実際の分析開始前の準備段階でのExcel作業に多くの時間を費やすことが課題となっているため、この点のスキルアップが必要です。

クリティカルシンキング入門

データ分析で未来を切り拓く学び

なぜ情報を分解するのか? 状況を解像度よく理解するためには、情報を分解することが重要です。特に、数字はグラフ化が可能なため、非常に有効な手段となります。分解を行う際にはいくつかの注意点があります。まず、加工の仕方としては、表に追加する欄を考えたり、相対値を計算したりするなどです。また、グラフを作成することで視覚を働かせることも効果的です。 多角的に見るための視点とは? 次に、情報の分け方についてですが、単に機械的に分けるのではなく、仮説を立てて特に影響力の大きい要素を優先して分解します。また、同じ状況に対して複数の観点から分解することも重要です。ある一つの視点だけでは状況を完全に把握できないことがあるため、他の視点も試すことが肝要です。 問題箇所を特定する方法は? さらに、MECE(Mutually Exclusive, Collectively Exhaustive)を意識して分解することで、問題箇所の特定を助けます。目的を明確にし、わかりやすい形で層別、変数、プロセスに分解すると良いでしょう。また、ロジックツリーを使って、仮説を立てた上でインパクトの大きい要因から切り口を考えます。この過程でアイデアを広げる際にもロジックツリーは有用です。 入学者分析で何が得られる? 具体的な応用として、入学生徒の性別、学力、地域、求めるものなどの傾向を分析することが挙げられます。これにより、入試広報活動を改善し、学校が求める生徒像に合致する生徒を獲得することができます。また、普段から数字をグラフ化する習慣をつけ、ロジックツリーなどを利用して考えを図式化することも有効で、完璧さを追い求めるよりも、実践と反復練習を重視することが大切です。

アカウンティング入門

財務三表で見える!企業理解の新視点

財務三表の意味は? アカウンティングについての学びでは、財務三表は単なるデータの集合ではなく、それを用いて企業の業績を説明するためのツールであることを理解しました。これにより、以前は苦手と感じていた財務面について、シンプルに捉えられるようになりました。私の中には、財務三表を完璧に理解しなければならないという先入観がありましたが、実際にはその構造を理解することで、未解決の問題は調べて対応できるという考えに変わりました。また、アカウンティングは専門家だけが扱うものだと思っていましたが、さまざまな立場の人が財務状況を説明し、理解できるための汎用性のあるものという印象に変わりました。 月次報告の意義は? 月次報告については、報告者の視点や議論の適正さを考慮し、違和感があれば具体的な確認を心がけています。月次報告と年間目標の関連性を意識しつつ、現状をアカウンティングの言葉で説明できるように努めています。また、自社の財務三表の特徴を把握することで、企業体質の理解にも役立てています。1年単位に留まらず、さらに3年、5年単位で会社業績を追いかけられるようになりたいと思っています。 分析の視点は? さらに、月次報告に対しては、事業における価値提供の方法や資産活用結果という観点から、財務として意義のある分析や説明がなされているのかを常に疑問として持つ視点も大切です。財務三表やその元になるデータへの見方や解釈は、立場によって変わることを理解し、他者の意見や背景を積極的に探るよう心がけています。中長期的な財務目標に到達するための準備や課題についても、アカウンティングの視点で検討し、自社及び他社の決算報告書を読み、自分なりの解釈を築いていきたいです。

データ・アナリティクス入門

効果的な仮説立案で施策展開が変わる

仮説立案の重要性とステップ 仮説を考える際のポイントとして、まずは複数の仮説を立てることが重要です。一つに決め打ちせず、複数案を考え、その中から絞り込むプロセスを取るべきです。また、仮説同士に網羅性を持たせるため、異なる切り口で仮説を立てることが求められます。この際、3Cや4Pといったフレームを使うことで、切り口を広げることができます。これらのフレームを定着できるように、繰り返し意識して使用することが重要です。 問題解決と結論の仮説分類 仮説はその目的に応じて、「問題解決の仮説」と「結論の仮説」に大きく分類されます。それぞれ、過去・現在・将来といった時間軸に応じて仮説の中身が変わります。仮説と検証はセットで行うことで、より説得力を持たせることができます。 効果的な施策展開への道 現在、施策展開が乱立している状況を整理し、ハンドリングできるようにしたいと考えています。より効果的かつ効率的な施策展開のためには、仮説を常に意識して立てることが必要です。現状では議論の中である程度のところで決め打ちになってしまっているように思います。より効果的かつ効率的な運営を行うために、問題解決のプロセスに沿った仮説立証を定着させ、日々の業務に意識的に取り入れることが重要です。 フレームワーク活用と効果検証 また、仮説を立てるためのフレームワークについても学び、問題や課題の提起を具体的な施策に関して行います。その際、都合の良い情報になっていないかに留意しながら、データを集めて施策の効果検証を行うことが求められます。効果検証の整理をするためにも、適切な仮説立てとその検証を通じて、施策展開をより効果的かつ効率的に進めていきたいと考えています。

マーケティング入門

エンタメとマーケで見る心の動き

自己紹介で何を感じた? 「自己紹介」のエクササイズで、相手の自己紹介を聞いた際に自分の気持ちを意識するように指示されたことが印象に残っています。確かにこれは、商品やサービスを提供された際に顧客がどう受け止めるかという心の動きと全く同じです。個々のニーズにもよるでしょうが、私は経歴などの客観的なデータよりも、相手の話し方や温度感、表情に引き込まれる傾向があります。一方で、自分では自己紹介を比較的上手くできたと感じていましたが、実は何の根拠もなくそう思っていたことに気付き、フィードバックが重要であることを悟りました。相手がどのように受け止めたのかを把握することは、マーケティングの基本かもしれません。 コンテンツ反応を読み解く? 自分の仕事に当てはめて考えると、提供したエンタメコンテンツがどのように受け止められているのか、その視聴時間数や視聴態度としてのフィードバックを読み解く視点が重要だと感じました。視点によって、浮き彫りになるフィードバックもあれば、埋もれてしまうものもあるでしょう。何を基準に解釈するかは感性も関わるので、感性の磨き方も学びたいと思います。 データで戦略を立てる? 新しい職種へのチャレンジとして、まずはデータの全体像を把握することが必要です。調査方法や測定手法、マトリックスを理解し、何を成功とするのか、その基準を把握することに加え、なぜそれが成功とされるのかを考えます。また、過去の事例において、仮説と結果の差分はどの程度だったのかを知り、戦略を立てる際にどのようにデータを活用するのかを学びます。データがサポートしない新しいことにチャレンジする際は、どのように戦略を立てるのかを考えることが必要です。

リーダーシップ・キャリアビジョン入門

リーダーシップとデータ活用で未来を拓く

リーダー姿勢はどう? リーダーの本質は、つき従う者が存在することであり、信頼がなければ従う者はいないという点にあります。したがって、リーダーは自ら行動を起こし、組織のあるべき姿勢をメンバーに示すことが重要です。また、目標の重要性をメンバーにしっかりと理解させる必要があります。 困難にどう向き合う? 目標達成の過程では、必ず困難や課題に直面します。その際に、リーダーが逃げたり、メンバーに責任を押し付けたりすると、信頼は得られません。メンバーは、実務能力だけでなく、困難や課題にしっかりと向き合う意識を持つことをリーダーの行動を通じて見ています。 CRMで何が変わる? 現在、マーケティング、戦略、商品企画業務に従事していますが、職場でのCRMデータ活用はまだ十分に浸透していません。そこで、CRMデータを活用したマーケティング戦略と商品企画を目標に掲げています。具体的な分析結果をもとに啓蒙活動を始め、メンバーにこの意義を共感してもらうことが重要です。自らの事例を分かち合い、部会などを通じて分析目的やデータの切り口を発表させることで、職場でのCRMデータ活用を普及させています。 以下のステップで活動を進めています: 1. 目標設定と部内での課題提起(実施済) 2. 自身の分析事例の明確化(実施済) 3. 他メンバーへの目標と取り組みたい内容の明確化(12月) 4. 他メンバーが実施した分析手法とその目的の明確化(12月から2月) 5. メンバーからの事例を集め、集合知として事例集を完成させる(3月) このプロセスを通じて、組織全体でCRMデータの活用を深め、効果的なマーケティング戦略を構築することを目指しています。

データ・アナリティクス入門

データ分析で見分ける成功の鍵

データ分析で比較はなぜ重要? データ分析の基本は「比較」であることを学びました。しかし、ただ単に比較すれば良いというわけではありません。分析の目的に応じて比較の軸が異なるため、その目的を明確にすることが重要です。さらに、データ分析の結果を報告する際には、見せ方を工夫することも大切です。比率を見たいのか、推移を見たいのかなど、定量データに応じた適切な見せ方を検討する必要があります。 飛行機の生存能力をどう改善? 動画の中で、飛行機の生存能力を上げるための改善点を考えるという課題がありました。初めは「欠損している部分」を改善するべきだと思いましたが、分析の目的を考えると、「欠損していない部分」を補強する方が生存能力が上がるという解説を見て納得しました。 業務でのデータ分析の課題とは? 日々の業務でも、お客様がデータ分析をしたいと言いつつ、現状の把握だけで終わってしまうケースが多々あります。そこで、データ分析の基本として、目的の明確化と比較の重要性を伝えていきたいと思います。たとえば、実績だけの数値を並べているケースでは、その数値が良いのか悪いのか判断できず、その後のアクションが不明瞭になっているお客様が多くいます。このような場合には、具体的な提案を行いたいです。 学びを実践するプロセスが大事? 学んだことを実践し、アウトプットすることで、その結果が良かったのか、改善の余地があるのかを言語化することも大切です。振り返りを必ず行い、学んだことを整理し自分の中に落とし込むプロセスを欠かさないようにします。グループワークや講義の中では、自分ごととして捉えることを意識し、積極的に考え、発言するように心がけています。

クリティカルシンキング入門

データ分析で「全体像」を掴む技術

全体像はどう描く? データ分析において、状況を明確にするために分解が重要だと改めて感じました。まずは全体像を定義し、その上でデータを鵜呑みにせず可視化することが大切です。これまでの分析ではグラフを十分に活用してこなかったため、今後は積極的に取り入れたいと思います。比率計算を行うことは基本として、これまでの実践が正しかったと確認できた点は良かったです。 どの視点が大切? 分析する際、単に機械的に分けるのではなく、BtoBビジネスでの分析環境を踏まえて、年齢層や学生かどうかといった視点を考慮することが重要です。特徴的な傾向が見えない場合でも、それ自体に価値があることを意識し、様々な切り口から分析を試みることが大切です。こうしたアプローチを通じて、データ分析の精度を上げていきたいと思っています。 仮説の真実は? 私は頻繁にデータ分析を行う立場にいますので、全体を改めて定義し、グラフを駆使しながら多角的にデータを分解してみることに挑戦したいと考えています。また、特定の仮説が正しいか検証するためにも、多様な切り口での分析を継続して行いたいです。現在の業務改善プロジェクトで実践している「プロセス分解」にも、さらに効率的に活用できる方法を追求していきます。 過去と今を比べる? そこで、過去のプロジェクトレビューを計画しています。以前取り組んだ案件のデータを利用し、当時と最近の学びを基にした分析を比較し、効率や分解の質を評価したいと考えています。結論が変わることはないと思いますが、分析時間や分解の質など他に計測できる点を比較し、効率化の可能性を探りたいと思います。適用可能なプロセス分解手法は、今後も活用していくつもりです。

クリティカルシンキング入門

データ分解で見つける新しい視点

データ分解の必要性は? 今週の学習では以下の点について考察しました。まず、データを分解する際には、さまざまな視点からの切り口を持っておくことが重要です。データの分解方法や細かくするやり方によって、データの見方は大きく変わり、傾向や仮説が立てやすくなります。また、多面的な視点でデータを分解することも必要です。MECE(漏れなく、ダブりなく)を用いて検証することは基本ですが、さまざまな角度から分析することの重要性を感じました。さらに、データの可視化も重要であり、グラフなどを使うことで傾向の見方が大きく変わるため、積極的に用いていきたいと考えています。 業務へどう活かす? これを自分の業務に当てはめると、以下のようになります。データを単に表にまとめるだけでなく、詳細に分解したりグラフ化することで、関連性の洗い出しに役立てられると考えます。具体的には、開発中の製品の物性データ解析を行い、改善に必要な影響因子を洗い出したり、売上と在庫のデータ推移を国やユーザーごとに解析し、仮説立てに活用したりします。また、文章データを整理し、プロセス解析と分類分けによる分析を行います。 分析に多角視点は? データ分析や分解については、自分だけで行うのではなく、他の人にも確認をお願いし、異なる視点や着眼点を参考にして分解のバリエーションを増やすよう心がけます。データを取得する際も、従来の方法にとらわれず、「本当に必要なデータなのか」という視点を意識して行います。過去のデータとの関連性も考慮に入れ、有用なデータ取得を目指します。結果に対しては、「本当か?」といった問いを繰り返し、別の視点での傾向の可能性を確認することも重要です。

データ・アナリティクス入門

データで意思決定力を高める学び

データにコメントを加えるべき理由は? 対面で説明をしていたため、分析データ(数値やグラフ)にコメントを入れることができなかった部分がありました。しかし、その場にいない人や聞いていない人もいることを考えると、文章を加えることは重要です。 グラフ選びのポイントは? 誰が見てもわかりやすいデータを提供するために、大きな数値には%を、シェアを見るためには円グラフを、上がり下がりを示すには縦棒グラフを、差を示すには横棒グラフを適切に使い分けることが大切です。 効果的な意思決定のためには? 「意思決定を行う」ための分析には、比較対象を明確にし、その基準を設けることが重要です。基準が人によって異なると、決定が難しくなります。そのため、上司や同僚との確認やコミュニケーションをしっかりと行うことが必要です。 計画作りで考慮すべき点は? 分析に取り掛かる前には、ヒアリングや過去資料を確認し、仮説を立ててから分析を進めることが重要です。計画は大まかでなく、他人も理解しやすいように具体的に作成し、次に生かせる内容にすることを心掛けたいと思います。資料のページ数は増えてしまうかもしれませんが、「意思決定を行う」という目的を意識しながら簡潔にまとめる努力が必要です。 定量・定性分析の進め方は? 過去に事例がなく、基準や要素、軸なども整備されていない状態ではありますが、データを活用して定量・定性分析を進め、今後共通する基準を元に意思決定ができる土台を築いていく必要があります。中期的な目標としては、PDCAを回せるようにすることを掲げています。そして、短期的には基準の作成という要修正項目を念頭に置きながら分析を進めていきます。

クリティカルシンキング入門

イシュー特定で成功を引き寄せる方法

なぜ視点がずれる? イシューを特定する重要性と、それがずれるケースが非常に学びになりました。チームで議論をするとき、メンバーとの視点がずれていると感じることがあります。その原因として、イシューをしっかり特定せず進めるケースや、イシューが問いの形になっていないケースがあることを学びました。また、特定はできていても、思考の力や意識によって途中でずれてしまう場合も多いため、立ち返ることができる進め方が必要だと考えています。 本質の判断は? イシュー特定の際には、多くの分解ができたとしても、現状を踏まえ何をイシューとすべきかを特定する必要があります。今回の演習は、これまでの学びを繋げて実践的に学習できる機会となりました。 どう提案する? 解決策の検討や提案については、他部署から提示された課題に対して、人事領域でできる解決策を提案・実行することが求められます。日々のイシュー特定では、受け取った問題をそのまま進めずに、自分でさらに問いを立て、イシューがきちんと特定できているか確認したいと考えています。 採用の疑問は? 採用業務については、現状の問題を踏まえ来期の運用を考えている最中で、複数人で取り組んでいるものの、イシューの特定が正確かどうか疑問が残ります。そのため、データを分解し構造化して考えていきたいと思います。 具体策はどう考える? 具体的な取り組みとしては、MTGの際に議事録の頭や自分のメモに、特定したイシューを記載して常に押さえ続けるようにすること。また、課題を考える際には必ず構造化して書き出し、具体的に考える力を強化するために、具体と抽象を行き来するトレーニングを進めたいと思います。

データ・アナリティクス入門

分析を活かす!仮説とフレームワークの実践術

仮説はどう見える? 仮説を明確にしてから分析を進めることが重要です。これにより、適切なデータの取得が可能となり、比較したい項目に対して最適なビジュアル化を行うことができます。分析ではいくつかのフレームワークを利用することで、効率的に進めることができます。 成長促進は何が必要? 勤務先の成長を促進するために、どの領域にリソースを投入するべきかを判断する際には、分析結果をもとに経営の意思決定を支援したいです。この際、従来の定性的なニーズ内容に加え、定量的データの分析も考慮に入れます。また、複数のテーマを比較し、最適な選択ができるようなアウトプットを心掛けます。学んだ内容を資料に反映させ、周囲に影響を与えることで、他社のスキル向上へと繋げたいです。 図表作成の第一歩は? Excelで図表を作成するスキルを身につけるためには、苦手意識を払拭し、まずは行動に移すことが重要です。時間がかかっても取り組み、教本などの資料を購入し手元に置きましょう。 仮説構築のコツは? 仮説構築力を養うためには、網羅性のある複数の仮説を立てることが重要です。ロジックツリーの利用や、ブレインストーミングを行うことで、より完結な仮説を構築できます。 実践力はどう磨く? フレームワークに関する知識を増やし、実践力を付けるためには、積極的に情報を交換し、見つけた事例を他人に教えるなどコミュニケーションを大切にします。困った時にはフレームワークを検索する癖をつけ、自身の業務に応用してみましょう。 記録管理はどう活用? これらの知識や成果を一か所に記録する場所を設け、振り返りや忘れ防止に活用することが効果的です。

「意識 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right