データ・アナリティクス入門

データの見方が変わる瞬間

基本思考をどう整える? 今回の動画や演習を通して、従来は何となく基本的な見方でデータを眺めていた自分に対し、根本的な考え方の基礎を再認識することができました。表面的な比較だけでなく、意図的にデータを加工して比較することの重要性を実感しました。 数字と視覚、どっちが正しい? また、他のデータと比べる際には「数字に集約して捉える」ことや「目で見て捉える」視点が必要だと認識しました。一目で把握できる程度のデータ数であれば十分ですが、ある程度の規模がなければデータの価値は向上せず、大量のデータを扱う際には加工する手順が不可欠だと理解しました。単純に平均値を見るのではなく、値の分布やばらつきに注目することも大切です。 仮説とデータの整合は? さらに、平均値やばらつきを基に、大量のデータを加工し、ビジュアル化・グラフ化を行うことで仮説と照らし合わせ全体を俯瞰する手法の重要性を再確認しました。分析のプロセスでは、まず目的や仮説を明確にした上でデータの収集が行われ、その後、仮説の検証や分析を繰り返すことが意義のあるものだと改めて理解しました。 各種平均の使い分けは? また、データの捉え方においては、代表値としての単純平均、加重平均、幾何平均、中央値や、散らばりとしての標準偏差があり、それぞれを目的に応じて適切に使い分けることが重要であると感じました。まずは自分なりの仮説やストーリーを意識し、必要なデータを整理してから分析に取り組むことが大切です。さらに、データのビジュアル化にも注力し、目で見て整理する方法にチャレンジしていきたいと思います。 未来のデータ戦略はどう? 今後は平均値やばらつきという視点を重視しつつ、加重平均や幾何平均も意識的に活用していきたいと考えています。また、標準偏差については、効果的に使用できる場面を見極め、業務の中での活用を目指すとともに、ツールの扱いについても理解を深める必要があると感じました。

データ・アナリティクス入門

多角的仮説検証で未来を拓く

仮説の意義は何? 仮説とは、ある論点に対する一時的な答えであり、これを正しく用いることで個々の仕事に対する検証マインドが向上し、説得力を高める効果が期待できます。また、ビジネスのスピードや行動の精度を向上させる点でも大きなメリットがあります。 多角的視点ってどう? 仮説を立てる際は、1つの切り口に固執せず、複数の視点からアプローチすることが重要です。異なる視点を網羅することで、問題の原因や解決策を多角的に捉えることが可能になります。フレームワークを活用すれば、自分の思考の幅を広げながら、多様な仮説を漏れなく立てることができるでしょう。 仮説の種類は何? また、仮説には「結論の仮説」と「問題解決の仮説」という2種類があり、時間軸に沿ってその内容が変化することも特徴です。仮説検証のプロセスでは、既存のデータ(売上数値やアンケート結果、市場調査レポートなど)を活用する方法と、必要に応じて新たにデータを収集する方法が考えられます。 反証データは必要? 検証にあたっては、自分の仮説を支持するデータだけではなく、反証となるデータも積極的に集めることが不可欠です。都合の良いデータだけを選別すると、結論が誤るリスクが高まるため、幅広い視点から情報を収集する姿勢が求められます。 各視点はどう整理する? 以上のように、仮説は「What」「Where」「Why」「How」といった4つの視点を意識して整理する必要があります。仮説の網羅性と多角的視点、そして反証データを意識することで、広告運用の分析の質や精度向上につながると感じました。たとえば、キャンペーンの予算配分の最適化やランディングページの改善、広告クリエイティブの効果向上、新たなターゲティングの発掘などに対して有効なアプローチだと思います。ただし、優先順位の付け方がまだ未熟な部分があるため、初めはさまざまな切り口での仮説検証に取り組んでいきたいと思います。

データ・アナリティクス入門

仮説と検証で切り拓く成長の軌跡

仮説と検証の意義は? 日々の実務経験を通して、仮説には大きく「結論の仮説」と「問題解決の仮説」があること、また仮説と検証をセットで考える重要性を実感しました。正しい仮説を用いることで、各自の検証マインドが向上し、説得力が増すとともに、ビジネスのスピードや行動の精度が上がると感じています。 良い仮説の作り方は? また、良い仮説を立てるためには、普段から知識の幅を広げ、ラフな仮説を積極的に作成する意識が必要だと納得しています。「創造的な仮説を考えるコツ」として、常識を疑うこと、新しい情報と組み合わせること、そして発想を止めないことが挙げられ、これらはデザイン思考とも通じる部分があり、組み合わせて実践するとより効果的だと感じました。 新たな分析手法は? 普段から使うフレームワークだけでなく、あまり意識していなかった分析手法を取り入れることで、仮説をより広い視点から考えることができると実感しています。例えば、従来の分析手法に加え、最新の視点での分析である5Aカスタマージャーニーを通じた気づきを得るなど、知識の深化が仮説の幅を広げる一助となっています。 新規施策の仮説は? 店舗オペレーションの改善や新規施策の導入時には、常に仮説と検証を繰り返しており、今後もあまり意識していなかった分析フレームワークを積極的に活用することで、より多様な仮説を立てる努力をしたいと考えています。また、セグメンテーションの切り口にも着目し、普段とは異なる視点からデータを考察する習慣を身につけることで、全体の分析力を向上させたいと思います。 マネージャーの挑戦は? さらに、チームマネージャーとしての役割を果たす中で、自らが率先して行動すること、的確な質問によってメンバーの成長を促すこと、そしてチームメンバーと役割分担を行いながら仮説と検証を実践することを意識的に業務に取り入れ、チーム全体のスキル向上に努めたいと考えています。

クリティカルシンキング入門

情報を分解して新たな可能性を発見

グラフ化の重要性とは? 分解を行うことで、解像度が向上することを痛感しました。特に、グラフ化の重要性を理解し、視覚的に情報を把握するのは新鮮で面白い体験でした。切り口が見つかると、その観点に注力しやすくなるものの、さらに多様な切り口を考えることも重要です。新たな発見を確定的な答えと見なしすぎず、分解を進めることで結果の変化が生じる可能性も意識するべきだと感じました。手を動かすことで初めて見えないものも浮かび上がり、「見つからなかった」ということ自体も価値のある結果と捉えられる点に気づき、はっとさせられました。 MECEをどう意識する? 分解を行う上で重要なのは、常にMECE(漏れなくダブりなく)を意識することです。これにより、目的に沿った分解を進められます。日常の業務において、分解を実施する際は次のポイントを意識しています。①全体を正しく定義しているか、②分解が目的に沿っているか、③他者からフィードバックを得て、自身の思考の癖を補正することです。 分解の応用例は何か? 具体的には、データが扱われるさまざまな業務に応用が可能です。例えば、備品の在庫管理や発注予測、さらに社内コミュニケーションを活性化するイベントでも有効です。特にアンケート形式でデータを収集する際には、設問設計が非常に重要であり、目的に応じた分析の切り口を試行錯誤しながら模索したいと思っています。 どのように課題を洗い出す? 現状の業務運用における課題を洗い出すためには、データを多様な切り口で分解し、仮説を立てることが欠かせません。特に、MECEを意識し、分析の目的を見失わないようにすることが大切です。備品の在庫管理では、現状データを分解し、傾向を見出すことで在庫の無駄を排除し、適正な発注を図ります。また、社内のコミュニケーションイベントでは、プロセスごとに課題を明確化し、分解した結果に基づいて翌年のアンケート設問設計を見直していく予定です。

クリティカルシンキング入門

思考のバランスを育てて、新たな視点を得る

偏った考えは何故起こる? 考えには偏りや制約があることを学びました。人は無意識のうちに自分の好きな考え方に偏りがちで、情報を集めたり思考を巡らせたりしています。このため、重要な情報を見落としてしまい、結果として結論が変わることもあります。また、演習を通じて、制約がないと逆にアイディアが広がりにくい特性があることに驚かされました。 どうして自問自答する? 「もう1人の自分を育てる」ことの重要性を感じました。結論を導き出す際には自問自答を繰り返すことが大切です。業務においては、様々な情報を幅広く浅く得ることが求められますが、それらの中から何が重要なのか、どこまで深掘りすべきかを自問しないと表面的な情報だけで結論を下してしまいます。講義で学んだ視点、視野、視座といった多角的な視点を通じて、手元の情報が十分かどうか、なぜそのように考えたのかを問い続けることが重要だと理解しました。 情報をどう活かす? 私の所属する部門では、日々膨大なデータや事象が発生し、担当者から報告を受けていますが、私はそれらの情報を点で捉えがちです。学んだ「もう1人の自分を育てる」方法を通じて自問自答を繰り返し、思考の偏りをなくしてフラットに物事を捉えられるよう努力しています。これにより重要なポイントに気付け、本質を捉えられるようになると考えています。 目的は何から整理する? 目的を整理する際には、何が目的で、誰に何をどう伝えるのか、必要な情報をフラットな目線で整理します。情報収集が終わった後で、その情報が十分か、様々な視点で再確認することが重要です。最終的な結論に際しては、自分が正しいと考えるだけでなく、もう1人の自分を作り出し、なぜそう考えるのかと問い続け思考を深めていきます。 他者の意見は役立つ? こうしたプロセスを進めるにあたり、他者の意見も取り入れながら、自分の思考の偏りや浅さを確認し、より良いアウトプットを目指しています。

データ・アナリティクス入門

正しい比較で未来を切り拓く

本質をどう捉える? 今回の学びを通じて、データ分析の本質は「適切な比較」にあると再認識しました。これまでは無意識に比較を行っていましたが、今後は目的意識をより明確に持ち、比較対象や条件の設定に一層注力する必要があると感じています. 比較対象は何のため? まず、比較対象の選定についてです。これまでは目的が単純なため、対象の選定に深い検討を加えることが少なかったですが、今後は「何を知るために、何を基準にするのか」という明確な目的を持って、比較対象を吟味していきたいと考えています. 条件統一の意味は? 次に、分析の条件を統一することの重要性を学びました。分析したい要素以外の条件を揃えることで、因果関係にある要素を正確に特定できるようになり、精度の高い結論に導くことが可能となります. 施策例から何を学ぶ? 例えば、自部門の利益率向上を目指す施策立案の場面では、現状の課題を明確にし、改善策を具体的な数値に基づいて提案することが求められます。そのためにも、前年同期や目標値といった明確な基準を設定し、条件をしっかりと統一した上で、定量データを活用することが重要です. 実務での実践法は? 実務に活かすための具体的な行動としては、まず「基準」を明らかにした比較対象の選定があります。単に数値が低いと結論づけるのではなく、何と比較するかを明確にし、改善のポイントを浮き彫りにします。また、条件を整えた上で要因分析を実施し、真の要因を特定して精度の高い対策を講じることが求められます. 変化にどう向き合う? なお、実際の業務では状況の変化やさまざまな要因により、分析の目的や前提条件が途中で変化することもあると感じています。そのような状況下で、皆さんはどのように方向性を定め、納得感のある結論を導いているのか、また前提条件が揺らいだ場合の軌道修正のコツなどについて、意見交換ができればと思います.

データ・アナリティクス入門

仮説構築のフレームワークで実力アップ

仮説構築で何を優先すべき? 仮説構築のポイントについて学んだことは、以下の通りです。 まず、仮説構築では複数の仮説を出すことが重要です。3Cや4Pといったフレームワークを活用し、網羅性を持たせることが求められます。決め打ちにしない姿勢も大切です。 次に、仮説を絞り込むための基準としては、具体的なデータや根拠が必要です。たとえば、SNSのプロモーションが弱いと判断する場合、その根拠を明確にする必要があります。 どのデータを用いるべき? データ取得や計測前には、指標の絞り込みが重要です。何を比較すれば仮説が立証されるのかを確認します。例えば、故障件数ではなく、1件あたりの対応時間を指標とすることが有効です。 また、比較対象のデータも集める必要があります。Aが正しいというだけでなく、BやCを否定するデータも必要です。これにより、より説得力が増します。 仮説検証の鍵とは? 仮説には「結論の仮説」と「問題解決の仮説」があり、それぞれの使い分けと違いを意識することが重要です。問題解決の仮説では、社内のシステム切り替えにおいて複数の製品候補の中から1つを選ぶ際、網羅性のある原因究明と問題箇所の特定が求められます。A製品が良いというデータだけでなく、他の製品(B, C)がダメというデータも揃えることで、Aの比較優位性を証明することができます。 フレームワーク選択の重要性 仮説検証のシミュレーションでは、まず仮説の洗い出しを行います。3Cや4Pのフレームワークが適用できるかどうかを検証し、適していない場合は他のフレームワークを検討します。 最後に、データ検証の洗い出しでは、取得可能なデータの確認と、どの指標が計測・取得すべきデータなのかを特定します。これにより、仮説の検証がスムーズに進むでしょう。 以上のポイントを踏まえて、仮説構築と検証のプロセスを実践していくことが大切だと感じました。

クリティカルシンキング入門

結論から生まれる説得力

伝えたい理由は何? 「伝えたいことの理由付け」について、複数の支え方(すなわち根拠や裏付け)が存在し、その中から目的や相手に合わせた最適な方法を選ぶことが重要だと実感しました。以前は理由付けには包括的な視点が必要だと考えていましたが、共通する要素に注目し、分類することで、状況に応じた適切な支え方ができると気づきました。その結果、説得力が増し、相手も理解しやすくなると感じています。 ピラミッド構造はどう? ピラミッドストラクチャーは、結論や主張を頂点に置き、その下に根拠や理由を階層的に配置する手法です。この構造により、まず結論を冒頭で示すことで読み手はすぐに要点を把握できます。次に、体系的に並べられた根拠によって論理的な納得感が生まれ、さらに情報の階層化が、必要に応じた詳細な説明を可能にし、理解を促進します。 提案の極意は何? 今後は、提案書や報告書の作成時にピラミッドストラクチャーを意識して取り入れる予定です。たとえば、経営層への報告では結論と効果を明確に示し、意思決定を支援する文書を作成します。また、顧客への提案では、導入メリットを冒頭に示し、信頼性のある根拠や事例で裏付けることで、納得感を高める工夫を行います。さらに、社内の説明資料では、読み手の理解度に応じた情報の詳細さを調整し、効率的なコミュニケーションを図ります。 要点はどう見直す? これまでの文書作成では、情報を広く網羅するあまり、要点が見えにくく冗長になってしまうことがありました。しかし、今後は「伝えるべきことを、伝わる形で」届けるため、結論から始まる構成と、その根拠をしっかりと示す論理性の強化に努めていきたいと考えています。 説得力をどう磨く? これまでの業務の中で、特に効果的だった理由付けはどのようなものでしたか。また、説得力をより一層高めるためには、どのような具体的なデータや根拠が活用できると思われますか。

デザイン思考入門

共感が紡ぐ本質の発見

誰のために取り組む? 社内でデータ活用推進を担当する中、どのような人に、どのような目的でコンテンツを活用してもらいたいかを考える必要性を改めて実感しました。今回、デザイン思考における課題定義を学ぶ中で、まず「誰のための取り組みか」を明確にする重要性を再認識しました。各部署で業務状況や意識が異なることを踏まえ、ヒアリング内容に加え、「もしこの人が○○だったら」という仮説的な視点を取り入れてペルソナを作成することで、対象者の背景や課題、感情に寄り添った検討が可能になりました。その結果、リアルな声だけに捉われず、幅広い視点から課題を捉える仕組みづくりの基盤ができたと感じています。 解決策に頼りすぎ? 今回の振り返りを通じて、解決策ありきで考えないことの大切さを強く感じました。業務の中で、つい「このダッシュボードを作れば良い」「この機能を入れれば便利になる」といった解決策から考えがちですが、本当に解決すべき課題は、ユーザー自身も言語化できていない無意識の困りごとである可能性が高いと気づきました。そのため、なぜその現象が起きるのか、背景にはどんな要因があるのかと問い続ける姿勢が、持続的な価値提供につながると実感しています。 本質的な課題の見極め? また、課題定義においては、共感フェーズで得た具体的なエピソードや感情を丁寧に読み解くことが非常に重要だと学びました。単に「この人はこう言っていた」という事実を受け止めるだけでなく、「なぜ自分がそこに共感したのか」「その言葉の裏にある背景や価値観は何か」と考えることで、深い理解につながります。さらに、課題を抽象化して定義する際には、まず具体的な現象を十分に観察・収集し、そこから意味を引き出すことが大切だと感じました。抽象化は便利な反面、現実との乖離に陥るリスクがあるため、具体から出発し共感を手がかりに本質的な課題を見極める力を今後も養っていきたいと思います。

データ・アナリティクス入門

仮説思考で未来を拓く!

仮説のメリットは何ですか? 「仮説」とは、ある論点に対する仮の答えのことです。この仮説を用いることで、説得力の向上、問題意識の高まり、スピードアップ、行動の精度向上といったメリットがあります。仮説は目的に応じて分類され、さらに時間の経過を考慮して整理されます。例えば、過去の問題を解決する方法として仮説を立てることができます。 正しい仮説の見方は? 仮説を立てる際は、目の前の数字だけにとらわれずに俯瞰してみることが重要です。複数の仮説を決め打ちせずに立て、網羅性を持たせるためにさまざまな切り口を考慮します。また、都合のよいデータだけに頼らず、反論を排除するまでの検証が求められます。 仮説技法のコツは? 仮説を立てるテクニックとして、「なぜ」を繰り返して知識を広めたり、別の視点や時系列で考えることが挙げられます。また、ラフな仮説を作る際には、常識を疑い、新しい情報と組み合わせ、発想を止めないことが大切です。 リーダーはどう実践すべき? リーダーの役割として、仮説を検証するプロセスを習慣化するためには、率先垂範し、仮説と検証方法を常に考えることが重要です。また、質問を使ってコーチングを行い、チーム内での役割分担によるブレインストーミングやディスカッションを推進します。 新仮説はどう生まれる? 創造的な仮説を考えるためには、ビジネス内外の組み合わせや否定的な問いを投げかけると良いでしょう。そして、仮説、データ分析、検証方法をセットで考え、それをチームで共有することが求められます。 どう自己を再確認? 最後に、パッションを高めるための自問を言語化し、自分の生きがいやパフォーマンスを再確認することも重要です。これには、自分の目標を再確認し、現在の状況に対する考えを深めることが含まれます。こうしたプロセスを通じて、自身の成長とチームの成功を目指します。

クリティカルシンキング入門

伝わるスライドづくりのコツ満載!

適切なグラフの選び方とは? 相手に伝えたいことをスライドで表現する際に重要な点は以下の通りです。 まず、グラフの種類を理解し、伝えたい内容に応じて適切なグラフを選ぶことが大切です。スライドは極力シンプルにし、必要な部分にのみ装飾や色を付け加えるよう心掛けましょう。また、伝えたいメッセージの順番に合わせて図表を配置し、読み手の視線が自然に左から右、そして上から下に動くように工夫します。さらに、読みたくなる文章になるよう、アイキャッチを加えたり体裁を整えたりして、視覚的に引き込みやすくすることも重要です。 準備段階で意識すべきことは? 「スライドを作る前段の労力」という言葉が特に印象に残りました。相手に伝えるためには、データの収集から見せ方、文章の工夫まで多くの努力が必要ということを改めて理解しました。これまで学んできたデータの分解や文章作成の注意点を見直し、実践に活かしていきたいと考えます。 例えば、オリエンテーションのスライドでは、読み手の視線の動きを意識し、文章の硬軟に気をつけて作成することが求められます。メール作成においても、どうすれば学生がすぐに読んでくれるかを考え、アイキャッチを置くことや体裁を整えることが重要です。これによりパッと目に入ってきやすいメールが作成できます。 見直しの重要性をどう考える? スライドを作成する前には、まずそのスライドで何を伝えたいのか、その目的を明確にすることが不可欠です。その目的に沿って、必要な情報を考え、収集します。スライドを完成させた後、装飾が過剰ではないか、重要なポイントが一目で分かるか自分で見直すことが必要です。また、メールなどの文章を作成した後には、自分でも新鮮な目で見直し、伝えたい情報がスムーズに入ってくるか確認するよう心掛けます。 このように、伝え方を工夫することで、相手に確実にメッセージを伝えられるよう努めたいと思います。

クリティカルシンキング入門

グラフとメッセージ、一致させる極意

グラフとメッセージは合致? グラフと見せ方の工夫として、メッセージとの整合性が重要であることが印象に残りました。これまで、既に作成されたグラフをそのまま資料に使用していましたが、本当にメッセージと一致していたかはあまり考えたことがありませんでした。今後は、メッセージと図、グラフの相関性を考慮し、適切なものを選択していきたいと思っています。 フォントの印象はどう? 見せ方の工夫では、フォントや色によって与える印象という点も考えさせられました。これまでは、多くの装飾や色を使っていたため、読み手を意識しつつ、最小限でわかりやすく示すことを心がけたいです。 アイキャッチは効果的? また、読んでもらうための工夫として、アイキャッチや文章の硬軟、体裁が挙げられていました。その中でも、アイキャッチに関しては、人によって受け取られ方が異なるため、一般的にどんな内容ならイメージしやすいかに悩みました。 学んだ知識を活かす? 今回学んだ内容は、以下の自分の業務に活かせると考えました。物性比較やネガティブキャンペーンなどの比較データには、最適なグラフや表を適用し、分かりやすくまとめる方法が使えると思いました。また、社内外の報告用資料やメール、議事録においては、読んでもらう工夫としてアイキャッチを置くことや、体裁を整えて読みやすくすることに役立てたいです。読み手を意識し、内容作成を心がけていきます。 報告書の工夫は? メールや報告書を書く際は、単に文章を書くのではなく、タイトルの工夫や体裁を整えることで、読み手が理解しやすくなるように構成します。パワーポイント資料作成においては、キーメッセージと内容が一致しているか、第三者に確認してもらいます。過剰な強調を避けるためにも、資料作成後に内容を見直します。グラフ作成においても、示したいメッセージとグラフが一致しているかを意識したいと思います。
AIコーチング導線バナー

「意識 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right