データ・アナリティクス入門

仮説で拓く学びの道

分析の基本は何? 本資料は、分析を比較の視点から行い、仮説思考を持って問題に取り組むための考え方と手法を示しています。分析の要点として、プロセス、視点、アプローチの三つの軸が必要とされ、各軸が互いに補完しながら、より深い理解を促すことを意図しています。 プロセスをどう考える? プロセスでは、まず目的や問いを明確にし、その問いに対する仮説を立てます。次いで、データを収集し、分析によって仮説を検証するという流れが求められます。 視点と工夫は? 視点については、インパクト、ギャップ、トレンド、ばらつき、パターンといった観点からデータを捉え、それぞれの側面から情報を整理していきます。一方、アプローチでは、グラフ、数字、数式などを用いて、情報を視覚的かつ計量的に表現することで、理解しやすくする工夫が大切です。 可視化はどう? 比較のための可視化手法としては、データの特徴を一つの数字に集約する方法、グラフ化して目で捉える方法、そして数式に集約するアプローチがあります。これにより、データの持つ意味がより明確になります。 代表値は何? また、データを見やすくするためには、代表値と分布の確認が有効とされています。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、一方、ばらつきを見るためには標準偏差が活用されます。特に、95%のデータが含まれるという2SDルールは、分布の確認において重要な指標となります。 契約単価の意味は? 具体例として、【1】の契約単価の場面では、相加平均を用いた結果、受注率などの違いが十分に反映されず、平均値が大きく見えてしまうという事実が挙げられます。そのため、加重平均を用いることで、感覚に近い平均単価が算出できる可能性が示唆されます。 成長率はどう考える? また、【2】の成長率の場面では、合計の成長率を足して年数で割る方法が用いられていましたが、こちらは幾何平均を利用するアプローチが適切です。具体的には、(1+x)^2=◯年後の売上/スタート年の売上という考え方に基づく計算が求められます。 計算見直しは? これらの考え方を踏まえ、Q2では【1】と【2】の実際の計算を見直し、過去に作成したデータを再評価する行動を取る必要があります。また、平均値の計算方法一覧を見える場所に保存し、必要な際にすぐに確認できるようにすることで、定着した学習行動が実現されることが期待されます。

戦略思考入門

ターゲットを絞り込む勇気の一歩

差別化の学びは? 差別化を検討する際に重要な2点について学びました。 ターゲットはなぜ狭める? まず、ターゲットの絞り込みの重要性です。施策や差別化の検討には、ターゲットを具体的に設定することが不可欠です。この設定がしっかりしていれば、他の検討事項もぶれずに進めることができます。私は受注の可能性を考えるあまり、ターゲットを広く設定しがちでしたが、今回は勇気を持って絞り込んで施策を考える必要があります。 競合視野はどう検討? 次に、より広く競合を視野に入れる必要性についてです。これを業務に置き換えると、自社会計システムに関する施策を検討する際、他社の会計システムだけを見ていました。しかし、業務自体を外注するBPOサービスや税理士なども考慮すべきです。さらに、エクセルなどの無料ツールも、顧客のニーズから見れば競合といえます。顧客がどのようなニーズを持って当社サービスを検討しているのか、改めて整理し、必要な競合を漏れなく洗い出したいと思います。 媒体はどう選ぶ? 営業資料の作成や広告、オウンドメディアの場面では、ターゲットをより詳細に具体化したいです。また、今まで注目していなかった広義の競合(例えばBPOやエクセルなど)にも目を向け、その競合との差別化を進めていきたいです。 予算割当はどう決める? 予算の割り振りを検討する場面では、VRIO分析を活用したいと考えています。これまでは過去の実績や受注傾向を元に予算を決定していましたが、今後はVRIO分析によって内部資源の強みを把握し、強化する施策や予算配分を考慮したいです。 絞込みは本当に有効? 勇気を持ってターゲットを絞り込む決断はまだ十分とは言えません。分析やフレームワークを活用した情報整理も必要ですが、それに基づきターゲットを効果的に絞り込む決断を意識したいと思います。 顧客ニーズは何を示す? 顧客のニーズを見直すことで、広義の競合を洗い出す際に役立つと考えています。そのためには、3C分析の顧客部分をより精緻にし、それに基づいた競合の洗い出しと差別化戦略の構築を進めていきます。 VRIO分析の成果は? 最後に、VRIO分析を初めて学びましたので、実際にアウトプットを作成し、そこから何が見えてくるのかを体験したいです。また、新入社員に意見を求めることで、内部資源をさまざまな角度から客観的に捉えることができているかを振り返りたいと考えています。

戦略思考入門

技術が拓く戦略の全体像

現在地とゴールは? これまで一週間ごとに学んできたフレームワークや概念が次第に結びつき、戦略思考の全体像が見えてきたと感じました。全体像を捉える過程では、まず自分の「現在地」を正確に把握し、目指すべき「ゴール」を明確に設定することが重要だと理解しました。 取捨選択の意義は? ゴールへの道筋では、学んだ差別化の手法を活用し、何を行い何を捨てるかという取捨選択が不可欠です。これらの判断やプロセスの根底には、市場の動向や事業の経済性―具体的には規模の経済性、範囲の経済性、ネットワーク経済性といった要素―を捉える視点があることを再認識しました。複数のフレームワークを駆使することで、一連の流れがより明確に整理されると感じています。 市場メカニズムは? また、市場のメカニズムを理解することは、競争の力学や自社の強み、そして新規参入の際の機会や障壁といった辺りについて、深い洞察を得る上で非常に意義あるものでした。こうした知識は、戦略立案の際の差別化や取捨選択の判断、さらには最終的なゴール設定に対しても、客観的で効果的な意思決定を下すための基盤となります。 技術は手段か? 一方で、エンジニアとして身につける技術や知識は、目的そのものではなく、ビジネスで何を成し遂げるかという目標に沿って活用するための「手段」に過ぎないと痛感しました。技術的に正しい選択が必ずしもビジネスとして最適とは限らず、市場環境や利用可能な資源という文脈の中でその真価が引き出されるのだと感じます。 技術と目的の調和は? 今後は、「技術はあくまで手段である」という視点を持ちつつ、利益創出やコスト最適化などのビジネス上の目的と技術的取り組みとのバランスを意識していきたいと思います。エンジニアとして専門性を高めるために、さらなる技術習得や知識の深化に努め、多様なフレームワークを駆使して問題解決や価値創造に寄与できるよう、着実に「手札」を増やしていきます。 利益構造の理解は? また、自社の利益構造や業界全体の動向、市場のメカニズムをより深く分析することで、技術や知識がどの場面で最大の効果を発揮できるかを見極め、その「ビジネスの文脈」を正確に理解していくことも大切であると感じました。 学びをどう活かす? これらの学びを基に、具体的なビジネス課題や目指すべきゴールに対して、最適な技術と知識を適切なタイミングで選択し、実際の行動に移すことで、事業に主体的に貢献していけると確信しています。

戦略思考入門

伸ばす・残す・捨てる業務判断術

業務廃止は難しい? 業務の追加は容易であっても、既存の業務を廃止するのは非常に難しいと実感しています。業務の目的や効果を再確認し、ただの惰性や習慣で行われていると判断できれば廃止は可能ですが、一定の効果が見込める業務の場合、万が一のトラブル発生時に説明できる根拠と覚悟が求められます。特にお客様対応を廃止する場合、業績低下というリスクも抱えるため、一層慎重になる必要があります。 定量基準の導入は? 今回学んだことは、「伸ばす」「残す」「捨てる」を判断する基準を、できるだけ定量的に設定する重要性です。営業活動であれば投資対効果(ROI)が評価指標となる一方、スタッフ業務においては、時間あたりのアウトプット(業務の重要度、処理量、資料作成量、効果など)に換算して判断することが望ましいと感じました。もちろん定性的な判断も必要ですが、基本的には定量的な基準をできるだけ活用し、有限なリソースから最大のアウトプットを引き出す視点が、不要な業務の廃止に繋がると考えています。 リスク軽減策は? 一方で、廃止によるリスクを最小限に抑えるためには、代替策があることや、最終的に相手にメリットがあることを十分に説明する必要があります。もし相手に直接のメリットが感じられない場合であっても、必要な時の対応策について事前にしっかりと説明し、ケアを怠らないことが重要だと思います。 保険運用を見直す? また、外貨建保険の資産運用においては、ALMの観点から各保険商品ごとに、買い入れる資産の種類や期間を設定し、保険販売に応じた資産の買い入れが行われています。現在は比較的頻繁に買い入れが実施され、丁寧な対応がなされているものの、販売量の少ない保険商品に関しては、頻繁な買い入れを行わずに集約や頻度の低減など省力化が進められていると感じます。今回の学びを活かし、さらに買い入れ頻度の引き下げや保険商品ごとの買い入れ集約を検討することが可能だと思います。その際には、買い入れを省力化する場合のリスク―例えば金利リスク量(買入金額と単位当たりの金利変動リスクの積)など―を定量的に算出し、どれだけ頻度を削減しても安全かを判断する基準を設けることが有効です。あわせて、事前に関連部署へ説明し、合意形成を図ることが重要だと考えます。 反発対応の具体例は? 最後に、業務の廃止に伴い、関連部署から反発が生じた事例について、どのように説明し対処されたのか、具体的な事例があれば教えていただけますと幸いです。

データ・アナリティクス入門

論理で解く!現場課題の4ステップ

問題解決の手順は? 「問題解決の4ステップ」と「ロジックツリーを使った分解思考」が今週の学びの中で特に印象に残りました。まず「問題解決の4ステップ」では、「何が問題か?(What)」を明確にし、「どこに問題があるか?(Where)」でその範囲を絞り込みます。さらに、「なぜ起きているのか?(Why)」で原因を深堀りし、「どうするか?(How)」で具体的な対策を検討する流れを学びました。このフレームワークを用いることで、感覚や経験だけに頼らず、論理的に課題を捉えられると実感しました。 ロジックの整理は? また、ロジックツリーの手法では「モレなく・ダブリなく(MECE)」を意識しながら、問題やテーマを枝分かれさせ、整理する方法が紹介されました。例えば、現場で発生する遅延という問題に対して「人」「資材」「天候」などのカテゴリーに分解し、それぞれを詳細に検討することで、原因の見落としを防ぐことが可能となります。さらに、各要素を深掘りすることで、より具体的な解決策に結び付けられる点が非常に実践的だと感じました。 再現性は保たれる? これらの思考法を現場の課題整理に活用することで、感覚や経験に頼らず、再現性のある改善が実現できると考えています。たとえば、工期が予定よりも遅れている場合には、まず「What:何が問題か?」で遅延の事実を明確にし、「Where:どこに問題があるか?」で特定の工程に絞ります。そして、「Why:なぜ起きているのか?」で人員不足や資材納品の遅れ、天候の影響など原因をロジックツリーで分解し、それぞれに対して「How:どうするか?」の具体策を検討します。 トラブル対応は? 実際に現場で問題やトラブルが発生した際には、まず「何が問題か?」を関係者と共有し、事実を明確にします。その上で、問題のある工程や範囲を「どこに問題があるか?」の観点から洗い出し、ロジックツリーを活用して「なぜ起きているか?」を検証します。原因が複数考えられる場合には、MECEを意識して整理し、各要素に対して「どう対応するか?」という具体策を検討することが重要です。 習慣化は可能? 今後は、毎日の朝礼後など短いミーティングを通してこの4ステップを活用し、現場の問題を見える化・言語化する習慣を身につけたいと考えています。個人としても、業務日報にこのフレームワークを取り入れることで、思考力と実践力をさらに高めていきたいと思います。

リーダーシップ・キャリアビジョン入門

キャリアの未来を拓く4つの理論

講座の狙いは何? 今週の講座では、「代表的なキャリア理論を知る」ことに焦点が当てられました。以下にその内容をまとめます。 キャリアの価値基準は? まず、キャリア・アンカーについてです。これは、エドガー・H・シャイン博士が提唱した理論で、自己分析や他者からのフィードバックを通じて、自分の仕事における価値観を明確にする方法です。キャリア・アンカーには8つの種類があります:特定専門分野、全般管理コンピタンス、自律・独立、保障・安定、起業家的創造性、純粋な挑戦、奉仕および社会貢献、生活様式です。これらを確認する手順として、自己診断やインタビューを行い、それらを考慮してキャリア開発を決定することが推奨されます。この理論は、現在のキャリアや人生の判断基準として役立つ一方で、制約にもなる可能性があります。 生存戦略はどう挑む? 次に、キャリアサバイバルについてです。これは、職務と役割の戦略的プランニングに関する分析手法で、環境変化や複雑な人間関係に対応するために重要です。組織が自分に求めるものを把握し、変化を予測して対応するための計画を立てることが求められます。 今後のリーダー像は? 続いて、これからのマネジャーとしてのあり方です。急速な変化に対応するために、自己変革を継続することが大切とされています。必要なスキルには個人としてのスキル、仕事に必要なスキル、テクニカルスキル(論理思考力、分析力)、ヒューマンスキル(コミュニケーション、巻き込む力)、コンセプチュアルスキル(目標設定、ビジョン設定)などがあります。 指導法はどう使う? 最後に、リーダーシップのスタイルについてです。リーダーシップは、状況や個人の特性に応じて活用の仕方を変えることが重要とされています。具体的には、指示型(具体的な指示を出す)、コーチ型(問いを立て、意見を引き出す)、支援型(働きやすい環境を整える)、委任型(権限を委譲する)のスタイルがあります。 支援策はどう考える? これらの理論を踏まえた上で、チームメンバーのキャリア開発を支援するための具体的な行動として、自己診断や個別インタビューの実施、キャリア開発計画の策定、定期的なフィードバックセッション、環境変化の情報共有、リーダーシップスタイルの適用が挙げられています。これにより、メンバーのキャリア開発を支援し、チーム全体のパフォーマンスを向上させることが目指されています。

データ・アナリティクス入門

データに宿る成長ストーリー

全体の流れはどう? 全体の流れとしては、WHAT→WHERE→WHY→HOWの順で進める点が印象に残りました。ただ単にデータを集めるのではなく、ひとつひとつの分析がストーリーとして意味を持つように、傾向をしっかり掴むことが大切だと感じました。 問題は明確か? まずWHATの段階では、今解決したい問題を明確にし、目標となる結論やイメージをもっておくことが重要です。何のためにデータを扱うのか、最初に目的をはっきりさせることで、分析全体の方向性が定まります。 どの候補を選ぶ? 次にWHEREのステップでは、複数の候補を出し、解決に役立ちそうなポイントやデータが取得可能かを検討します。単独で見る方法や、ツリー・組み合わせといった整理手法を用いながら、どの観点に重点を置くかを決めていくとよいでしょう。 原因は探れた? さらにWHYのフェーズでは、考えられる原因をできるだけ多く、また網羅的に仮説として挙げることが求められます。どんな要素が問題に影響を及ぼしているのか、広い視点で捉えることが分析の精度を高める鍵となります。 数値は何を示す? また、データを見る際には実数と比率の両面から代表値などの数値に注目し、明らかにすべきポイントを意識する必要があると再認識しました。どのデータが問題解決に直結するのかを見極めるために、どんな情報をどう加工すべきかを事前に考えておくことが重要です。 目的は明確に? 特に、日々の業務では「言語化しなくても大丈夫」という考えに陥りがちですが、データを扱う際には必ず「何をしたいのか」という目的を明確にすることが不可欠だと感じました。また、データ収集時にも最終的なアウトプットのイメージを持つことで、やみくもな収集を避け、意図のあるストーリーを先に構築する姿勢が大切です。 フォーマットは有効? 今後は、以下のフォーマットを活用していきます。まず、解決したい問題を最初に記述し、次にストーリーや考え方、データの集め方・分析方法の全体像を示します。その上で、WHAT、WHERE、WHY、HOWの各パートを用意して進める手法を徹底していきたいと思います。 仮説は多角的? 最後に、仮説思考における「複数と網羅」という視点が非常に印象的でした。インパクト、ギャップ、トレンド、ばらつき、パターンなど、さまざまな角度から物事を見る姿勢は、今後の成長に大いに役立つと感じています。

データ・アナリティクス入門

比較が拓くデータの新常識

データ比較はどう進める? 分析の基本原則は「比較」であり、まずはデータを比較する目的に立ち返ることが大切だと感じました。データ収集の前に仮説を設定し、その仮説を検証していくプロセスの中で、データをどのように加工して示すかという点が今回の学びのポイントでした。加工の視点としては、大きく代表値と散らばりの2つに分けられ、代表値には単純平均、加重平均、幾何平均、中央値があること、そして散らばりについては標準偏差で表現されることを学びました。 外れ値の対応はどうする? 今までは単純平均しか扱ったことがなく、重みを考慮した平均やべき乗を利用した手法は初めて触れる内容でした。また、平均値だけでは捉えきれない外れ値に対しては中央値を用いることで対応する方法がある点も新鮮でした。標準偏差については、なぜルートがつくのかという計算過程が理解でき、正規分布の場合にデータの約95%が±2個分の範囲に収まるという納得感を得ることができました。これまで平均を取るだけで思考が止まってしまっていた部分を、散らばりの視点からデータ活用の具体的なイメージに結び付けることができました。 移住データで何が見える? また、人口減少対策において活用される移住者データを分析することへの関心が高まりました。各市町村の移住者データを様々な属性で分析し、特に年齢や家族構成の散らばりを調べることで、どの施策に注力すべきかを推測するひとつの手法となり得ると感じています。現状、移住促進施策はUターン促進とIターン促進の大別がなされており、例えばUターンでは地元を想う集まりの取り組みを強化し、Iターンではボランティアや副業などにより継続的な関わりを持つ関係人口への支援を強化するという方針です。こうした大まかな区分に加え、より具体的な属性の分析が進むことで、移住理由を数値的に捉え、具体的な施策検討に役立てることができそうです。 今後の分析計画は? 今後は、所管部署に対して詳細な個別データの入手が可能かどうか問い合わせる予定です。データが手に入れば、エクセルを用いた分析に取り組みたいと思っています。特に県全体と沿岸地域の違いを明らかにすることで、一緒に施策を進める市町村の担当者や移住コーディネーターの方々の取り組みにも影響を与えられるのではないかと感じています。5月20日(火)に、所管部署の担当者が意見交換に来訪する予定のため、その際にデータ入手の依頼を進めるつもりです。

クリティカルシンキング入門

相手に伝わる論理的コミュニケーションスキルの磨き方

伝えるスキルとは何か? 相手に何かを伝える際に一番重要なのは、「何を伝えたいのか、何を理解してもらいたいのか」を明確にすることだと感じました。そのためには、感情や直感に頼るのではなく、論理的な根拠に基づいた主張を準備する必要があります。さらに、その際には相手の視点も考慮するべきです。こちらがどんなに論理的な準備をしても、受け取る側の準備が整っていなければ、それは「伝わっていない」のと同じです。相手の理解レベルに合わせて情報を構築することが求められます。また、「対話」の意識も大切です。相手の反論も想定しながら、柔軟に意見を伝える姿勢が必要だと思いました。論理的な主張を十分に準備できたなら、それをいかに簡潔に表現するかが重要です。長々と説明することなく、効果的に伝える技術が大事だと考えます。 IT業界での活用法とは? 私はIT業界で働いています。「他者に理解・納得してもらうスキル」はさまざまな場面で役立ちます。例として、顧客の要求仕様のヒアリングがあります。これは相手がITに詳しいとは限らないため、相手の理解レベルに合わせて、意図を明確に整理し伝えることが求められます。また、コードレビューでも役立ちます。自分がレビューする際も、他者からレビューを受ける際も、コードの意図を明確に整理し、理解可能な形で伝えることが重要です。プロジェクトの状況報告でも同様に、相手がそのプロジェクトに詳しくない場合を考慮し、論理的かつ簡潔に情報を伝えなければなりません。さらに、日常のコミュニケーションや後輩指導においても、このスキルは非常に役立ちます。 スキルを向上させるには? では、「他者に理解・納得してもらうスキル」を身に付けるためには、どのような行動計画が必要でしょうか。まず第一に、その手法、つまり「基礎」を身に付けることが必要です。具体的には、MECEやピラミッドストラクチャーといった分析や説明の手法を学びます。次に、これらの手法を実際に使ってみます。通常の会議やプロジェクト報告、レビューなどの場面で、それを使用することを意識して準備します。基礎を身に付け、実践する場を確保したうえで、反論や疑問にも適切に対応する意識が重要です。そして、実践後には振り返りを欠かさず、成功した部分や改善が必要な箇所を再認識し、次に活かします。こうしたプロセスを繰り返すことで、「相手に物事を伝える」スキルを確実に身に付けていきたいと考えています。

データ・アナリティクス入門

仮説とデータで勝つ戦略

仮説は本質か? WEEK4では、仮説を立てそれをデータで検証する思考法を学びました。仮説は「感覚」ではなく、根拠ある問いとして設定し、目的に合ったデータを収集・分析することが大切であると理解しました。たとえば、あるターゲット層に向けた広告の効果については、申込経路や具体的な単価など、定量的なデータをもとに検証することで、説得力のある改善策を導き出すことが可能だと感じました。 4Pで本質見出す? また、マーケティングの4P(Product、Price、Place、Promotion)の視点から仮説を組み立てることで、問題の本質や見落とされがちな課題が浮かび上がることにも気づかされました。特に、費用対効果を比較する際は、単なる表面的な数字ではなく、単位あたりの価値を基準に判断する重要性を実感しました。 検証と戦略は? この一連の流れ、すなわち仮説の設定、データの収集、検証、そして改善への取り組みは、単なる分析作業に留まらず、意思決定や戦略立案の基盤となることを再認識させてくれました。実際に現場で改善を実行するためには、データを正しく読む目と、仮説を深める思考の両方が必要であると感じました。 販促成功の鍵は? さらに、講師養成講座の販売促進においては、WEEK4で得た知見が「感覚」ではなく根拠ある判断を下すための基盤として活用できると考えます。広報活動における意思決定やターゲットの把握、また販促効果の見直しなど、戦略設計全体に渡り、大いに役立つと感じました。 計画実行は可能か? また、マナー講師養成講座の促進に向けた具体的な行動計画を4週間で立てました。 まず、Week 1では、ターゲット別に仮説を設定し、販促チャネルの効果についても仮説を立て、データ収集の項目を決定しました。 次に、Week 2では、過去数年間の申込者データを整理し、広報媒体ごとの広告実績を収集、さらに簡易なアンケートも実施しました。 Week 3では、ヒストグラムや円グラフなどを用いてデータの可視化を行い、費用対効果の高い媒体を絞り込むと同時に、仮説の正否を検証し、重点ターゲットを確定させました。 最後に、Week 4で、ターゲット別のプロモーションを再設計し、重点媒体への予算を再配分するとともに、効果検証体制を整えることで、改善策を実行に移しました。 この行動計画は実効性が高いと自分なりに評価しています。

戦略思考入門

競争から抜け出す差別化戦略のヒント

誰に差別化すべき? 差別化について考える際、「誰に対して差別化を行うのか」を明確にすることが重要です。多くの人が、「差別化 = 競合他社との差別化」と考えがちですが、ビジネスにおける戦略は単なる競合への対抗ではなく、顧客に自社を選んでもらうためのものである必要があります。そのため、自社のターゲット層をしっかりと特定し、その層に響く差別化の施策を考える必要があります。 他業界も見るべき? 差別化の施策を考える際には、他業界にも目を向けることが大切です。つい自社と競合他社だけにフォーカスしがちですが、異業種の企業も顧客の選択肢となることがあります。そのため、業界を超えた競合を把握し、差別化に取り組むことが求められます。 施策は実行可能? また、施策の実現可能性と模倣困難性も重視すべきです。どれだけ優れたアイディアでも、企業のリソースやスキルで実現できなければ意味がありません。また、簡単に真似されてしまうような施策では効果が薄いです。そのため、自社で実行可能であり、かつ他社が容易に真似できない施策を考え続けることが重要です。 戦略の見直しは? 我々の会社は、かつて業界内で優位性を保っていましたが、競合製品の普及や低価格化の流れによってその優位性が失われつつあります。VRIO分析を行った結果、競争劣位か競争均衡のレベルに留まっていることが分かり、新たな戦略を考える必要があります。社内では、製品開発のアイディアを全社員から募るシステムを活用して、競合他社の製品情報や顧客のニーズを把握し、差別化のアイディアを積極的に提案していきたいと考えています。 競合はどう捉える? さらに、私が携わるオウンドメディアの運営でも、多様な企業が同じテーマでメディアを展開しています。そのため、競合となり得るメディアをしっかりリサーチし、差別化を図る必要があります。特に、顧客の疑問を解決する専門知識や、実際の製品使用による課題解決の事例紹介を強みとして生かしていきたいです。 常に考え続ける? 差別化のアイディアを即座に出すのは難しいと感じますが、考え続け、アウトプットを続けることでスキルは育つと信じています。小さなアイディアでも思いついたら積極的に発言し、フィードバックを得ることでより良い施策にしていきたいと考えています。他人と意見を交わしながら考えることを習慣化し、個人の成長と共に会社の成長に貢献していきます。

データ・アナリティクス入門

グラフと平均値で掴む分析術のコツ

グラフは何を示す? グラフの活用法とその分析時の手法について考えます。まず、円グラフは各要素の割合を確認したい場合に使用します。一方、ヒストグラムは全体のばらつきを視覚的に把握したい時に便利です。グラフを活用する際は、事前に仮説を立て、その仮説に基づいて予測データと実際のデータを比較し、深堀することが重要です。 平均値はどう使う? 分析手法としては、様々な平均値があります。単純平均はただ平均値を求める方法です。加重平均は重みを考慮して算出され、例えば東証株価指数がこの方法を用いています。幾何平均は成長率や平均何倍になるかを知りたい時に使用されます。外れ値の影響を避けたい場合は中央値を用いるとよいでしょう。また、標準偏差を利用することで、データのばらつきを把握できます。標準偏差が小さいほどデータは均一であることを示します。これに基づき、2SDルールでは95%のデータが大よその範囲内に収まるとし、5%のデータは外れ値とされます。 リスクはどう把握? 施設のポテンシャルや価格の分布を分析する際には、ヒストグラムや散布図を使うことで、戦略に対するリスクを特定できます。例えば、ポテンシャルの高い施設で高コストの外れ値がある場合、戦略的値下げの必要性を検討する余地があります。また、小さい施設で安価なコストの外れ値はベンチマークとして他施設に引き合いに出されるリスクとなる可能性があります。 医療データの精度は? 医療機器のデータ精度を分析する際、標準偏差を利用して精度の精確性を確認することができます。業界の標準として、変動係数CVが2%以下であれば精度の担保がされているとされています。変動係数は標準偏差を平均値で割ることで算出されますので、まず標準偏差を求める必要があります。特に機器の精度が外れ値を持たず、許容範囲内に収まることが求められるため、標準偏差の知識は重要です。 適正価格はどう算出? 価格交渉の際、統一グループやGPO施設カテゴリ内の平均価格やベンチマークの引き合いがあります。この際、どの「平均」が使用されているかを確認し、データを鵜呑みにせず、グラフや散布図、加重平均や中央値を用いて適正価格を示すことが重要です。 仮説はどこから? 最後に、分析に取り掛かる前に仮説を立てることが大切です。仮説に正解はありませんが、経験に基づいた想像力を活かし、いくつも仮説を洗い出すことが有益です。
AIコーチング導線バナー

「活用 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right